CipherLab
User Guide

C Language Programming
Part |I: Basics and Hardware Control

For 8600 Series Mobile Computer

Version 1.11

CIPHER Lm

Copyright © 2014 — 2018 CIPHERLAB CO., LTD.
All rights reserved

The software contains proprietary information of CIPHERLAB CO., LTD.; it is provided
under a license agreement containing restrictions on use and disclosure and is also
protected by copyright law. Reverse engineering of the software is prohibited.

Due to continued product development this information may change without notice. The
information and intellectual property contained herein is confidential between CIPHERLAB
and the client and remains the exclusive property of CIPHERLAB CO., LTD. If you find
any problems in the documentation, please report them to us in writing. CIPHERLAB does
not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of CIPHERLAB CO., LTD.

For product consultancy and technical support, please contact your local sales
representative. Also, you may visit our web site for more information.

The CipherLab logo is a registered trademark of CIPHERLAB CO., LTD.

All brand, product and service, and trademark names are the property of their registered
owners.

The editorial use of these names is for identification as well as to the benefit of the
owners, with no intention of infringement.

CIPHERLAB CO., LTD.
Website: http://www.cipherlab.com

http://www.cipherlab.com/

RELEASE NOTES

Version Date Notes
1.11 Apr. 19, 2018 Part |
» Modified: 2.12.4 Special Fonts - U32 CheckFont(void) syntax, U32
GetFont(void) syntax updated
» Modified: Appendix I — Symbology Parameter Table for 2D Reader:
ScannerDesTblI[] - Byte 39 [bits 7, 6, 5] default by "0"
> Modified: Appendix Il — Scan Engine — 2D - UPC/EAN Families:
Byte 39 [bits 7, 6, 5] default by "0"
Part 11
- None
1.10 Nov. 16, 2017 Part |

» Removed: 1.1 Installation, 1.2 Development Flow

> Modified: Appendix Il Symbology Parameters —
Scan Engine, 2D:
Joint Configuration:
“Table I” renamed “Table A”
“Table I1” renamed “Table B”

Part 11

- None

1.09 Sep. 26, 2016 Part |

> Modified: Appendix I — SCANNERDESTBL ARRAYS:
Symbology Parameter Table for CCD/LASER Reader:
ScannerDesTblI[]:
*Byte 12/14/16/18 [bit 6-0] = Max. 127
*Byte 13/15/17/19 [bit 7-0] = Min. 4
Symbology Parameter Table for 2D Reader:
*Byte 14/16/18/23/28/30/32/34 [bit 7]=1, [bit 6]=Reserved,
[bit 5-0]=Max. 55
*Byte 15/17/19/24/29/31/33/35 [bit 7-6]=Reserved,
[bit 5-0]=Min. 4

» Modified: Appendix Il — SYMBOLOGY PARAMETERS:

Scan Engine, CCD or Laser:

CODE 2 OF 5 FAMILY -
INDUSTRIAL 25:
*Byte 12 [bit 6-0] = Max. 127
*Byte 13 [bit 7-0] = Min. 4
INTERLEAVED 25:
*Byte 14 [bit 6-0] = Max. 127
*Byte 15 [bit 7-0] = Min. 4
MATRIX 25:
*Byte 16 [bit 6-0] = Max. 127
*Byte 17 [bit 7-0] = Min. 4

MSI -
*Byte 18 [bit 6-0] = Max. 127
*Byte 19 [bit 7-0] = Min. 4

Scan Engine, 2D:

CODABAR -
*Byte 34 [bit 7]=1, [bit 5-0] = Max. 55
*Byte 35 [bit 5-0] = Min. 4
* descriptions for Length Qualification added

CODE 2 OF 5 -
INDUSTRIAL 25 (DISCRETE 25):
*Byte 32 [bit 7]=1, [bit 5-0]=Max. 55
*Byte 33 [bit 5-0]=Min. 4
INTERLEAVED 25:
*Byte 14 [bit 7]=1,[bit 5-0] = Max. 55
*Byte 15 [bit 5-0] = Min. 4

CODE 39 -
*Byte 23 [bit 7]=1, [bit 5-0]=Max. 55
*Byte 24 [bit 5-0]=Min. 4

CODE 93 -
*Byte 28 [bit 7]=1, [bit 5-0]=Max. 55
*Byte 29 [bit 5-0]=Min. 4

MSI -
*Byte 18 [bit 5-0] = Max. 55
*Byte 19 [bit 5-0] = Min. 4

CODE 11 -
*Byte 30 [bit 7]=1,[bit 5-0]=Max. 55
*Byte 31 [bit 5-0]=Min. 4

1D Symbologies -
MATRIX 25:
*Byte 16 [bit 5-0]=Max. 55
*Byte 17 [bit 5-0]=Min. 4

Part Il

- None

1.08 Mar. 21, 2016 Part |
> Modified: Replace “MSI 25” with “MSI”
New: 2.1.9 Input — str_input(), int_input, ip_input functions added

Modified: 2.4.1 — definition of Subscript 7 [bit 7] in WedgeSetting
array

> Modified: 2.14.5 — auto_flush() function added
> Modified: 2.14.6 — flush_DBF() function added
> Modified: Appendix I —
Symbology Parameter Table for CCD/Laser Reader:
ScannerDesTbl[]:
*Byte 9 [bit 7—6], [bit 5~4] = ‘00’ (default)
*Byte 9 [bit 0] = ‘0O’ (default)
Symbology Parameter Table for 2D Reader:
*Byte 5 [bit 5], [bit 0] = ‘1’ (default)
*Byte 6 [bit 4] = ‘1’ (default)
*Byte 9 [bit 7—6] = ‘00’ (default)
*Byte 10 [bit 1] = ‘O’ (default)
*Byte 11 [bit 7] = ‘O’ (default)
*Byte 25 [bit 6] = ‘1’ (default)
> Modified: Appendix I —
Symbology Parameter Table for 2D Reader:
*Byte 44 [bit 2], [bit 1] = ‘0’ (default) appended
> Modified: Appendix Il —
Scan Engine — CCD or Laser:
*Byte 9 [bit 7—~6], [bit 5—~4] = ‘00’ (default)
*Byte 9 [bit 0] = ‘0O’ (default)
Scan Engine — 2D:
*Byte 5 [bit 5], [bit 0] = ‘1’ (default)
*Byte 6 [bit 4] = ‘1’ (default)
*Byte 9 [bit 7—6] = ‘00’ (default)
*Byte 10 [bit 1] = ‘0’ (default)
*Byte 11 [bit 7] = ‘0’ (default)
*Byte 25 [bit 6] = ‘1’ (default)
> Modified: Appendix Il —
Scan Engine — 2D: (2D Symbologies):
*Byte 44 [bit 2], [bit 1] = ‘0’ (default) appended
Part 11
> Modified: Appendix 111 —
Bluetooth Examples — Bluetooth HID:
definition of Subscript 7 [bit 7] in WedgeSetting array
USB Examples — USB HID:
definition of Subscript 7 [bit 7] in WedgeSetting array

1.07 Nov. 12, 2015 Part |

4
»
4
»
4

Modified: 2.1.1 — return value ‘128’ for CheckWakeUp added
Modified: 2.1.1 — clear_bss() function added

Modified: Appendix | — Byte 4, bit 3 added to ScannerDesTblI[]
Modified: Appendix I — ScannerDesTbl2[] added

Modified: Appendix Il — Scan Engine — CCD or Laser —
UPC/EAN Families — UPC-E: Byte4, bit 3 UPC/EAN security added

Modified: Appendix Il — Scan Engine — CCD or Laser —
UPC/EAN Families — EAN-13 Addon Mode, Addon Security for
UPC/EAN added

Part 11

4
»
4

Modified: 1.4.1 — Ox09 BT_ACL_36XX added in Setting for Bluetooth
Modified: 4.1.3 — values of 802.11n added for NetStatus structure
Modified: 4.1.4 — values revised for RadioStatus structure

1.06 May 07, 2015 Part |

»

Modified: 2.4.1 — value of Subscript 0: Bit7-0 revised
Subscript 2: Bit 7 added

Modified: 2.4.1 — 1% ELEMENT: KBD/Terminal Type (Terminal Type
revised for value 11 ~ 15)

Modified: 2.4.1 — 3™ ELEMENT: INTER-CHARACTER DELAY (time
range & example revised)

Modified: 2.10.1 — ConfigureTriggerKey function added

Modified: 2.12.4 — FONT_SYS_08X16, FONT_SYS_14X28 added for
CheckFont, GetFont, and SetFont functions

Modified: 2.12.4 — 0x100 UTF-8 added for SetLanguage function

Part 11

v v v VvV Vv v Vv

Modified: 1.4.1 — settings for USB Mass Storage Device added
Modified: 5.1 — CipherLab ACL Packet Data added

Modified: 5.2.1 — ACL36xx[16], ReservedByte[204]

New: 5.3.5 ACL Functions

Modified: Appendix 111 — Wedge Emulator section removed
Modified: Appendix I11 — ACL added in Bluetooth Examples section

Modified: Appendix Il — USB Mass Storage Device: description for
open_com revised

1.05 Jan. 07, 2015 Part |
» Modified: 2.1.3 — comment added for AUTO_OFF

> Modified: 2.3.2 — scanMode, scanTimeout added for RFID parameter
structure

Modified: 2.4.1 — Subscript 2, Bit 6-1 & O added
Modified: 2.11.7 — statement for JPEG library added
Modified: 2.12.2 — table of Display Capability updated

Modified: 2.14.6 DBF Files and IDX Files —
Iseek_DBF/member_in_DBF/tell_DBF: on error, it returns -1

v Vv Vv Vv

rebuid_index: ruturns 1 for success; returns 0 for failure

Part 11
> New: 3.4 WISPr Library

» Modified: 5.3.3 — parameter BTOBEXFTEServer removed from
BTPairingTest

» Modified: Apendix 111 — Bluetooth HID & USB HID: Subscript 2, Bit
6-1 (Inter-character delay) added

1.04 Sep. 03, 2014 Part |

» Modified: 2.11.6 Graphics — SHAPE_FILL of circle/rectangle
corrected

Modified: 2.12.1 Font Size — new font files added

Modified: 2.12.4 Special Fonts — CheckFont, GetFont, SetFont
updated

> Modified: 2.12.5 Font Files — new font files added

» Modified: Appendix I (SYMBOLOGY PARAMETER TABLE I1) —
Byte 26/Bit 6 changed to ‘Reserved’ (ISBT 128 not supported)

» Modified: Appendix Il (Scan Engine, 2D) — Code 128: ISBT-128
removed

Part 11

- None

1.03 Aug. 05, 2014 Part |

v v v v v Vv

Modified: 2.2 — ConfigureReaderRAM function added
Modified: 2.11.1 — BacklitOn function added

Modified: 2.11.7 — ShowJPG, ShowJPGBySz functions added
Modified: 2.13.3 — fsize, ffreebyte functions revised
Modified: 2.14.5 — fformat function revised

Modified: Appendix I (SYMBOLOGY PARAMETER TABLE I) —
Byte 11/Bit 5 (GTIN -> GTIN-14)

Modified: Appendix | (SYMBOLOGY PARAMETER TABLE I1) —
Byte 2/Bit 5 (0: Disable MSI set to default), Byte43/Bit 4-1
(illumination level) added

Modified: Appendix Il (Scan Engine, CCD or Laser) — Byte 11/Bit
5 (GTIN -> GTIN-14)

Modified: Appendix Il11 (User Preference) — Byte 43/Bit 4-1
(illumination level) added

Part 11

- None

1.02 Jun. 17, 2014 Part |

»
»

Modified: 2.12.1 — the Kr font file removed

Modified: 2.12.4 — return value concerning KR removed (CheckFont,
Get Font, SetFont)

Modified: 2.12.5 — Font8600-KR20.shx, Font8600-KR24.shx
removed

Part 11

- None

1.01

1.00

May 13, 2014

Jan. 08, 2014

Part |

»
»
»
»

Modified: 1.1.1 — descriptions updated
Modified: 2.2.1 — global array FSEAN128[2], AlMark[2] added
Modified: 2.10.1 — SetTrig2Key added

New: 2.11.7 Color Display — SetColor, GetColor, ShowPic, GetPic
functions added

Modified: Appendix | (SYMBOLOGY PARAMETER TABLE 1) —
[Byte 11/Bit 6], [Byte 7/Bit 2,1] added

Modified: Appendix 1 (SYMBOLOGY PARAMETER TABLE I1) —
[Byte 44/Bit 7,6,5,4,3] , [Byte 43/Bit 7,6,5] , [Byte 7/Bit 2] added

Modified: Appendix Il (Scan Engine, CCD or Laser) — [Byte
11/Bit 6], [Byte 7/Bit 2,1] added

Modified: Appendix Il (Scan Engine, 2D) — [Byte 7/Bit 2,1], [Byte
44/Bit 7,6,5,4,3] added

Modified: Appendix Il11 — Byte 43/Bit 7 added (User Preferences),
Byte 43/Bit 6,5 added (Reader Redundancy)

Part 11

»

»

Modified: 4.1.1 NETCONFIG Structure — RssiThreshold, Rssidelta,
RoamingPeriod added

Modified: Appendix I —index 91, 92, 93 added for
GetNetParameter/SetNetParameter

Part |

»

Initial Release

Part 11

»

Initial release

CONTENTS

RELEASE NOTES ... crrcrirrssersseessnssensssssessnssssssssness -3-
INTRODUCT IO N tiitisssnsssnsssans 1
C COMPILER .etsieeiceeetrsseessssssssssssessssssssssssessssssssssssessssssssssssesssssssssssssssnsssnsssssessnsssnsessnessnsssnnnns 3
I A T4 T 0) B 1Y/ 1= 3
I e o = 1 o T 1Y 012 OSSR 4
RGN [T o =T o 1 PSSR 6
1.4 Register and Interrupt HaNAIiNGcooo oo 8
1.5 RESEIVEU WOKAS ..ottt sttt sttt s s s e e e et 8
1.6 BIit-FIEld USAQE... .ot e n e e 9
MOBILE-SPECIFIC FUNCTION LIBRARY w..ociictrcsersssrssns 11
2t TS V41 = o S 12
22t R I =1 1= = | S 12
2.1.2 Power ONn Reset (POR).....cciii s 16
2.1.3 System Global Variables...........o e 17
2.1.4 System INTOrMATIONooiie e s e e 19

2 TS ST =T o1 U | | Y OSSPSR 23
2.1.6 Program MaNAGETccccoeeerrererreereeseeseessesressessesseessesesssessesssssssssssessssnsessessesssesns 25
P2 A B To)Y,/ o] [0 7= To BN 1Y, T T [T 34
2.1.8 MENU DESIGN ..ot sn s e s s e nresne s e e e e enenneas 35
220 T B 1 g 0 15 RSP 39

P22 = 1= Y ode o < o= - T T S 41
P2 N = T=Y doXoTo [T D T=T ol o Lo 1 0T TSRS 41
P O o To [1Y/ o T SO PR OSSPSR 46
2.2.3 Scanner Description Table ... 50

Pz I o L T = Vo [51
2.3.1 VIFTUAL COM ...ttt b e s et 52
2.3.2 RFID Parameter STFUCTUIE ...ttt 53
2.3.3 RFID Data FOIrMALcociiiieeeeiee ettt s e s 53
2.3.4 RFID AUTNENTICATION ...ttt 55

P2 N =Y/ o T T= U o B YAY =T o [T S 58
2.4.1 Definition of the WedgeSetting AITAY ..o 59
2.4.2 Composition of OULPUL STHiNGcccceeeverceececie et 61

R = 1§ 7 =T SO SORR 64
P T R =TT T o IR Y =T o [U] g [o] RSP 64
2.5.2 BEEP FIrEQUENCYottt ettt eee st st e sae e s ee s se s se e et e s e e snesaneaneans 64

AR STRC N = T=T=T o I B LU = 1 1 (0] o ISR 64

P22 ST =Y I 1 T o= 1 o S 68

P VA1 o] = 1 {0] TSSO 69

D2 A AV AT 0] = (o] TR 69

CipherLab C Programming Part |

2 S R = == L L I [g (= O o Yo R 70
P2 S T N OF- 1 (=1 o T 1= Y RO 70

P2 S B A 1= o o o (OSSR 72
2.9 Battery & ChargiNg ...ccceceeeececeeeeseeesree s see st e s ste s st e se s s sseesesseesse s e esesnesnensesaennsenns 73
2.9.1 BAttery VOITAQE ...ttt s e s s a st s nn s sne e e 73
2.9.2 Charging STALUScccccceiecereeeeeerre ettt se e s s et e sre e e e sesnennnens 74
D2t 0 T (=1 ¢ - T S 75
D2 O T R T o= = | TR 75
2.00.2 ALPHA KEY ..eeeeeeeeeteieiee ettt sae e ses st e ssessessessessessesseeeeanesssssessessensensansensensenees 84

P2 1 TV =Y 2 USNSSP 87
D22t 5t N 1 5 T 20
P2 N R o 0T g L= PO 90
D2 I3t A O U | T o] 93

2 R TG B I 1 o] = Y2 USSR 95

D2 I I R O [T Y TR 99
Dt N T ST 1 0 0= T [USSR 101
22t I I G €T = o] Yo 103
P20 5t R A @0 (o] g 0 =1 o] = 2 106

D2 52 0] 1 5= 112
2.02. 0 FONE SIZEauieeeeee ettt ettt et et e e s e e eas e e s e e se e ae e saeesatesasesnsesneanseenanas 112
2.12.2 Display Capabilityccccceiireeesicceese et 112
2.12.3 MUlti-Language FONT ...ttt sa e e 112

D A] o = Tt = LI 0]) 113
2.12.5 FONT FIlES ettt e e ea e sa e s e e ae e s e saeesasesnnennneenneennnas 117
D22t G T Y/ T o ¢ [0 Y 2SS 118
D2 I T T = 1= o R 118
DAt G T2 Y = AN 1Y 119
Dt G TG] I N G- 1 o [OOSR 120
D2t I N LAY/ =V YT] U] =1 T) o 121
2.14.1 File SYSTEIM ...t n e nn e 122
2.14.2 Disk Name and DIr€CLOIYccooireieierererereses e 123

D2 I N B T (oY =¥ = R 125
2.14.4 FILEINFO STIUCTUIE ..ottt es e s s sesssessneesneesnaesnaesnneanneas 126
2.14.5 FAT File Manipulation........c.ccoeeeeerenereeeresesesee e 127
2.14.6 DBF FileS @nd IDX FIES..... et et et eeeee e e e saeeean e e e 145
2.14.7 File Transfer Via SD Card ...ttt 160
2.14.8 Get File INTOrMaAatioN ...ttt e 168
2.14.9 DEVICE_FILEINFO STIrUCLUIEcoueeeeeeeeeeeeeeeete ettt sn e 169
2.14.10 MaSS StOrage DEVICE ...t 174
2.14.11 File Manipulation Routines Compatible with Older Programs........... 175

D2 I N 2 L o] g e Yo [R 185
STANDARD LIBRARY ROUTINES.....itcccctrrrrvsrerrsssssrrsssssssrssssssessssssssssssssssssssssssesssssnsees 189
e N I I AV o S N = 195
SCANNERDESTBL ARRAY'S ...titirrererirssssesrssssssesssssssssssssssssssssssessssssssssssssssssssssssessassnsees 203

CipherLab C Programming Part |

Yotz U Q=T 1= TS3 I oI [S 203
Yotz U Q=T 0TS TS3) I o] 2 [210
Symbology Parameter Table for 2D Reader ... roeceeceve et 212
SYMBOLOGY PARAMETERS. ... cccecrrrrrrsssssssssss s s es s s sssssss e s s e ssssssssssssssssssssssssssmnsssnes 223
Scan ENQGINE — CCD OF LASEY ..o ceeeeceeteteceste st see e st ete e st et s s s s s e e s saean e snenneenns 224
(@0 T F= 1 o T 1 224
(@0 To LT 0) T =Y o 1 1 Y2 225
@0 T L= G 1 228
@0 o L= T 1 229
Code 128/EAN-128/ISBT 128......o e 230
Italian/French PRarmMacCOdeoocoeceeeeieececeeeseeee ettt s 231
Y Y SRRSO 232
NL=To F= LAY S T ol Lo [S 233

g LT ST = S 233
GS1 DataBar (RSS) FamMUlY ...ttt sttt ee e nn 234
1= 1] 1= S 235
UPC/EAN FAMUIIES ...ttt sttt s et st e e s e e s s et e snesanane s 235
o= U I T[] =TI S 241
(@0 T £= 1 o T 1 241
(0T [T 0) . T 242
[0 T [T 1 243
[0 T [T 1 2 244
[0 T {00 1. < J 244
Y Y SO 245
GS1 DataBar (RSS) FAMIIY ... 246

0 O A N I = T o o 1 1 247
UCC COUPON COUE ...t e e ss e s seess e e e e e e esessesseenennenne e eneeneens 249
JOINT CONFIGUIATION ...t n e e 249
0 T [0 50 251
1D SYMDOIOGIES ... r e nn e n e s 252
(O] o g1 010 XS] | (=3 ©0 T [SRS 254
2D SYMBDOIOGIES ...ttt e e s nn e e nn e e 256
SCANNER PARAMETERS .o rssrsscrrsr s s ssssssssssss s s s s s s s s sssssss s s s s sssssssssmssssssesssssssnsmnnssnes 259
T o= g 1 [T [S 259
(@01 g] o =T E=Te] o TN 1= 01 = 20 260
(R0 I =T 0 [] g o F= T a oY 20 RS 262
T =T 263
USEE PrEfEIEINCES ...ttt ettt et e e et e st e e e e se et e nneeaeeneesresnnansens 263
PORTING TOSHIBA-BASED C PROGRAMS ONTO 8600......ccoeennnnnnnnnnannns 265
STe 18 foT= 3N @0 [T 1Y/ o Yo [Tor= 1 Lo o | 265
LD L= = T Y/ 01 TSP 265

L@ IS =T O =T | 266
1= 1= S o 1 1 Y S 266

153 =X W ol U o o] 266

Starting Address of the User Program Data Storageccccceveeveeeveecerseescnceene 266

CipherLab C Programming Part |

0] 1 1 PSP PRPRRR PRI 267
= Td 1 | RS 267
(@ o T 0 T= 1= o 1 S 267
1 LY 251 1= o SR 268
T A 1= (o SRS 269
L o Y= X T Vo [= o 1] o S 269
[DTESY o] F= Y Ao [T U 1S o g g =T) = S 270
ST o3 g =T=T o I =2 Y0 [1 T o 270
VA1 (=T 0 0 T Lo 0T o B] o 1= P 270

INTRODUCTION

This C Programming Guide describes the application development process with the “C”
Compiler in details. It starts with the general information about the features, the
definition of the functions/statements, as well as some sample programs.

This programming guide is meant for users to write application programs for the 8600

Series Mobile Computer by using the “C” Compiler. It is organized in chapters giving
outlines as follows:

Part I: Basics and Hardware Control

Chapter 1 “C Compiler” — gives a concise introduction about the “C” Compiler.

Chapter 2 “Mobile-specific Function Library” — presents callable routines that are specific to the
features of the mobile computers. For data communications, refer to Part II.

Chapter 3 “Standard Library Routines” — briefly describes the standard ANSI library routines
about which more detailed information can be found in many ANSI related literatures.

Chapter 4 “Real Time Kernel” — discusses the concepts of the real time kernel, pC/0OS. Users can
generate a real time multi-tasking system by using the uC/0S functions.

Part Il: Data Communications

Chapter 1 “Communication Ports”
Chapter 2 “TCP/IP Communications”
Chapter 3 “Wireless Networking”
Chapter 4 “IEEE 802.11b/g/n”
Chapter 5 “Bluetooth”

Chapter 6 “USB Connection”
Chapter 7 “GPS Functionality”
Chapter 8 “FTP Functionality”

CipherLab C Programming Part |

Chapter 1
C COMPILER

The C compiler is for 8600 family 32-bit MCUs, and it is mostly ANSI compatible. Some
specific characteristics are presented in this section.

1.1 SIZE OF TYPES

Types Size in Byte
S8, U8 (char, unsigned char)

S16, U16 (short int, unsigned short int)
S32, U32 (int, long int, unsigned int, unsigned long int)
S64, U64 (long long, unsigned long long)

pointer

O N T N R

structure, union

CipherLab C Programming Part |

1.2 FLOATING TYPES

Float data types are supported and conform to IEEE standards.

Types Size in Bits
F32 (float) 32

F64 (double) 64
About Floating-Point

Every decimal integer can be exactly represented by a binary integer; however, this is not true for
fractional numbers. It is therefore very important to realize that any binary floating-point system
can represent only a finite number of floating-point values in exact form. All other values must be
approximated by the closest representable value. For example, even common decimal fractions,
such as decimal 0.0001, cannot be represented exactly in binary. (0.0001 is a repeating binary
fraction with a period of 104 bits!)

// Floating-point error
float A = 99999.1;
float B = 99999.0;
printf(“%.04F", A); // 1t prints “99999.1016” instead of “99999.1000".
printf(“%.04f’,(A-B) * 100); // 1t prints “10.1562” instead of “10”.
printf(""(A-B)==0.1?%s.", ((A-B)==0.1)?"Equal’:""Not Equal’);

// 1t prints “(A-B)==0.17?Not Equal”.

We suggest not handling floating-point values directly but converting them to integers first. After
calculations, convert integers to real numbers if necessary. For example, in order to process the
expression of 1.82-1.8, you are advised to modify the expression to something like 182-180, and
then divide the result by 100 to get the actual result of 0.02.

When the floating-point values are displayed, printed, or used in calculations, they lose precision.
Instead of using floating-point, use integer or long to perform arithmetical or logical calculations. If
there is a need to display a fractional number on the screen, convert the integer or long to a string
and add the decimal point in the proper place. For example,

long A=999991;
long B=999990;

long C=(A-B)*100;

printf('[%1d_%1d]",A/10,A%10); // 1t prints “99999_1".
printf("'[%ld.%1d]",C/10,C%10); // 1t prints “10.0”.

IEEE Format

Float is an approximate numeric data type, as defined by the standards. Floating-point

Chapter 1 Error! Reference source not found.

representations have a base and a precision p. If base is 10 and p is 3, then the number 0.1 is
represented as 1.00 x 107l If base is 2 and pis 24, then the decimal number 0.1 cannot be
represented exactly, but is approximately 1.10011001100110011001101 x 2™,

Precision refers to the number of digits that you can represent. The typical precision of the basic
binary formats is one bit more than the width of its significand because of an implied (hidden)
leading 1 bit. A “double precision” (64-bit) binary floating-point number has a coefficient of 53 bits
(one of which is implied), an exponent of 11 bits, and one sign bit. Positive floating-point numbers
in this format have an approximate range of 1073% to 10°°® because the range of the exponent is
[-1022,1023] and 308 is approximately 1023 = logip(2). The complete range of the format is from
about —103%°® through +103%%8.

Name Common Name Base Digits E min E max | Decimal digits Decimal E max
binary32 | Single precision | 2 23+1 -126 +127 7.22 38.23
binary64 @ Double precision | 2 52+1 -1022 +1023 15.95 307.95

CipherLab C Programming Part |

1.3 ALIGNMENT

Alignment of different types can be adjusted to facilitate CPU performance by trading off
memory space. By default, the alignment is set to 4 to optimize system performance. For
the purpose of memory allocation conservation, set alignment to 1 or 2.

The execution speed and memory efficiency illustrated below are for comparison of
different alignment values:

char a __attribute__ ((aligned(4)));
int b __ attribute__ ((aligned(4)));
char c __attribute__ ((aligned(4)));

int d__ attribute__ ((aligned(4)));

align(4)

+0

+1 d

+2

Execution speed: Fast
Memory efficiency: Low
< Adjustment

< Adjustment

Chapter 1 Error! Reference source not found.

char a __ attribute__ ((aligned(1)));
int b__ attribute _ ((aligned(1)));
char ¢ __attribute__ ((aligned(1)));

int d__ attribute__ ((aligned(1)));

align(1)

+4 C Execution speed: Slow

+5 Memory efficiency: High

If you use the ‘printf()’ function to print out float type data in OS tasks, the buffer for the
OS task must be allocated using aligned(8) to ensure data is correct.

For example:
OS_STACK buf[BufSize]__ attribute__ ((aligned(8)));

float A = 1.2345

printf(“%f”,A) // When the aligned(8) is added, it outputs “1.234500".

// If not added, it outputs “0.0” or other unexpected results.

Note: (1) This attribute specifies a minimum alignment for the function, measured in
bytes.
(2) You cannot use this attribute to decrease the alignment of a function, only to
increase it.
(3) The attribute is effective only for the individual statement that won’t affect
other declared variables.

CipherLab C Programming Part |

1.4 REGISTER AND INTERRUPT HANDLING

Register and interrupt handling are possible through C. However, they are prohibited as
all the accessing to system resources is supposed to be made via CipherLab library
routines.

1.5 RESERVED WORDS

These are the reserved words (common to all Cs) in general.

S8 us S16 ui6 S32
u32 F32 S64 u64 F64
Auto break case char const
continue default do double else
enum extern float for goto

if int long register return
short signed sizeof static struct
switch typedef union unsigned void
volatile while long long

Chapter 1 Error! Reference source not found.

1.6 BIT-FIELD USAGE

The following types can be used as the bit field base types. The allocation is made as
shown in the illustrations.

Types Size in Bits
S8, U8 (char, unsigned char) 8
S16,U16 (short , unsigned short) 16

S32,U32 (int, long int, unsigned int, unsigned long int) 32
S64,U64 (long long, unsigned long long) 64

The bit-field can be very useful in some cases. However, if memory is not a concern, it is
recommended not to use the bit-fields because the code size is downscaled at the cost of
degraded performance.

Fields Stored from the Highest Bits

Struct fieldl { Ul a:l;
Ule b:2;
Ule c3;
uUle d:1;
Ule e:8;, }
MSB LSB
15 | 14 13‘12|11|10|9|3 7|65 4‘3 2|1 0
- e - d - [b a

Fields Stored from the Highest Bits

If the base type of a bit field member is a type requiring two bytes or more (e.g. U16), the data is
stored in memory after its bytes are turned upside down.

Higher & bits Lower § bits
1514131211109 |8 (7|65 |4 |23|2|1]|0

Offset

+1

CipherLab C Programming Part |

Different Types (Different Size)

A bit field with different type is assigned to a new area.

Struct field3 { Ug a:2;
uie b:3; }

LSB
2|11 0
b
Different Types (signed/unsigned)
Struct fieldd { 516 a:2;
Ule b:3;
516 c4; |}
MSB LSB

Different Types (Same Size, long int = int = S32)

Struct field5 { longint a:5;
int b:4; }
MSB

10

MOBILE-SPECIFIC FUNCTION LIBRARY

Chapter 2

There are a number of mobile-specific library routines to facilitate the development of the
user program. These functions cover a wide variety of tasks, including communications,
showing string or bitmap on the LCD, buzzer control, scanning, file manipulation, etc.
They are categorized and described in this section by functionality or the resources they

work on.

The function prototypes of the library routines, as well as the declaration of the system
variables, can be found in the library header file. It is assumed that the programmer has

prior knowledge of the C language.

IN THIS CHAPTER

2t S V5 =] o o 12
2.2 Barcode ReaAdEruuuieee e 41
2.3 RFID REAUET ...t ettt eeieeeens 51
2.4 Keyboard Wedge.......veiiiiii e e e aane 58
2.5 BUZZEN .. e 64
2.6 LED INAiCAtOr ..o 68
2.7 VIDrator ... e 69
2.8 Real-Time ClOCKu e 70
2.9 Battery & Charging.....cuoeeeeiiieiii i eaeas 73
2.00 KeYPa et 75
20 150 T 1 0 90
2. 02 FONES s 112
P22 G I |V 1< o [0 Y 118
2.14 File Manipulationcooeeiiiiiiii e ea s 121

11

CipherLab C Programming Part |

2.1 SYSTEM

2.1.1 GENERAL

_KeepAlive___

Purpose To let the user program keep on running and prevent it from being
automatically shut down by the system.

Syntax void _KeepAlive___ (void);

Example ---
AUTO_OFF = 60; // set 1 minute
_KeepAlive__ Q; // load the AUTO_OFF value

Return Value None

Remarks Whenever this routine is called, it will reset the counter governed by the global
variable AUTO_OFF, so that the user program will keep on running without
suffering from being automatically shut down by the system.

See Also AUTO_OFF

CheckWakeUp

Purpose To check whether a wakeup event occurs.

Syntax U32 CheckWakeUp (void);

Example event = CheckWakeUp(Q);

Return Value (0] No wakeup event.

2 RS232_CABLE_DETECTED RS-232 cable is detected.

4 CHARGING Charging process is ongoing.

8 CHARGE_DONE Charging process has been completed.
16 POWER_KEY_PRESSED The POWER key is pressed.

32 TIME_IS_UP The alarm time is up.

64 USB_DETECTED USB cable is detected.

128 FASTV_DETECTED Fast V Port cable is detected.

12

Chapter 2 Mobile-Specific Function Library

GetlOPinStatus

Purpose To check the 1/0 pin status.
Syntax U16 GetlOPinStatus (void);
Example iStatus = GetlOPinStatus();

if (iStatus&0x10)
printf(“RS232 cable is connected.”);
else iIf (iStatus&0x20)
printf(“USB cable is connected.”);
if (iStatus&0x40)
printf(“Adapter is connected.”);
Return Value An unsigned integer is returned, summing up values of each item.

Each bit indicates a certain item as shown below.

Bit @ Value @ Item Remarks
0~ 0x00 NO_CRADLE Not seated in any cradle.
3
0x04 CHARGER_CRADLE Seated in the standard cradle —

Charging & Communication Cradle.

4 0x00 RS232_CABLE_ RS-232 cable is not connected.
DISCONNECTED
0x10 RS232_CABLE_ RS-232 cable is connected.
CONNECTED
5 0x00 USB_CABLE _ USB cable is not connected.
DISCONNECTED
0x20 USB_CABLE _ USB cable is connected.
CONNECTED
6 0x00 ADAPTER_ 5V DC adapter is not connected.

DISCONNECTED
0x40 ADAPTER _CONNECTED 5V DC adapter is connected.

13

CipherLab C Programming Part |

SetPwrKey

Purpose To determine whether the POWER key serves to turn off the mobile computer
or not.

Syntax void SetPwrKey (S32 state);

Parameters S32 state
O POWER_KEY_DISABLE The POWER key is disabled.
1 POWER_KEY_ENABLE The POWER key is enabled.

Example SetPwrKey(1);

Return Value None

shut_down

Purpose
Syntax
Example

Return Value

To shut down the system.

void shut_down (void);
shut_down();

None

Remarks You will have to manually press the POWER key to restart the system.
See Also system_restart

SysSuspend

Purpose To enter the suspend mode.

Syntax void SysSuspend (void);

Example SysSuspend() ;

Return Value None

Remarks

When a wakeup event occurs,
depending on the system setting.

system_restart

Purpose
Syntax
Example
Return Value

Remarks

See Also

14

To restart the system.

void system_restart (void);

system_restart();

None

This routine simply jumps to the Power On Reset point and restarts the system

automatically.

shut_down

the system may resume or restart itself,

Chapter 2 Mobile-Specific Function Library

clear_bss

Purpose To clear all uninitialized static variables.
Syntax void clear_bss (void);

Example void main(void)

Return Value

Remarks

{
clear_bss(); /* call it at the first line of main() */
/*other user code.. */
while(l);

}

None

A new function clear_bss() is added which can be called at the start of user
program to reset all uninitialized static variables to zero.

Note that uninitialized static variables are allocated in the bss (Block Started by
Symbol) section of user memory.

Basically, it is programmer’s responsibility to initialize the variables before
accessing them. They can do it by explicitly assigning a particular value to each
variable individually just before referring to it.

Or now they can call clear_bss() at the start of main() to reset the entire bss
section.

15

CipherLab C Programming Part |

2.1.2 POWER ON RESET (POR)

After being reset, a portion of library functions called POR routine initializes the system
hardware, memory buffers, and parameters such as follows.

There must be one and only one “main” function in the C program which is the entry

point of the application program. Control is then transferred to the “main” function
whenever the system initialization is done.

COM Ports

After reset, all COM ports will be disabled.

Reader Ports

After reset, all reader ports will be disabled.

Keypad Scanning

After reset, keypad scanning will be enabled.

LCD

After reset, LCD will be initialized and set to:
» Layerl Primary Color: White
> Layerl Secondary Color: None

> LayerO Color: Black

Backlight

Battery Mode:

> Level: 3

» Duration: 10 seconds
> Turn on by: Any Key
External Power Mode:

> Level: 5

» Duration: 30 seconds
> Turn on by: Any Key

LED

After reset, all the indicators will be set off and reset to default. (= LED_SYSTEM_CTRL for 8600
Series)

Calendar

After reset, Real Time Clock (RTC) will be set to the current time.

Buzzer Volume

After reset, the buzzer will be set off with its volume reset to default. (= HIGH_VOL)

USB Charging Current

16

Chapter 2 Mobile-Specific Function Library

After reset, the USB charging current will be set to 500 mA.

Others...

Allocate stack area and other parameters.

2.1.3 SYSTEM GLOBAL VARIABLES
A number of global variables are declared by the system.

Note: sys_msec and sys_sec are system timers that are cleared to O upon powering up.
Do not write to these system timers as they are updated by the timer interrupt.

extern volatile U32 Sys_msec; // in units of 5 milliseconds
extern volatile U32 SyS_Sec; // in units of 1 second
extern U32 AUTO_OFF; // in units of 1 second

This variable governs the counter for the system to automatically shut down the user program
whenever there is no operation during the preset period.

When it is set to 0, the AUTO_OFF function will be disabled.

AUTO_OFF = 60; // set to 1 minute; if the value is set to less than 30, it will
// be reset to 30 after reboot.
_KeepAlive__Q; // load the AUTO_OFF value

Note: You must call _KeepAlive__ () to reset the counter.

extern U32 POWER_ON;

This variable can be set to either POWERON_RESUME or POWERON_RESTART.

> By default, it is set to POWERON_RESUME. Upon powering on, the user program will start from
the last powering off session.

However, in some cases the user program will always restart itself upon powering on — (1) when
batteries being removed and loaded back; (2) when entering System Menu before normal
operation.

extern U16 SYSTEM_BEEP [];

This variable holds the frequency-duration pair of the system beep, which is the sound you hear
when entering System Menu.

The following example can be used to sound the system beep.
on_beeper (SYSTEM_BEEP) ;

17

CipherLab C Programming Part |

extern S32 AIMING_TIMEOUT; // in units of 5 milliseconds

This variable holds the aiming timer for Aiming mode.

» By default, it is set to 200 (= 1 second). Note that O is not allowed!

extern S32 BC_X, BC_Y;

> These two variables govern the location of the battery icon. Once their values are changed, the
battery icon will be moved. Set to (224, 0) by default.

extern U16 KEY_CLICK [4];

This variable holds the frequency-duration pair of the key click.
The following example can be used to generate a beeping sound like the key click.
on_beeper(KEY_CLICK);

extern U8 WakeUp_Event_Mask;

It is possible to wake up the mobile computer by one of the following pre-defined events:

Events Meaning

PwrKey_ WakeUp The wakeup event occurs when the keyboard wedge cable is
connected.

RS232_WakeUp The wakeup event occurs when the RS-232 cable is connected.

Charging_WakeUp The wakeup event occurs when the mobile computer is being
charged.

ChargeDone_WakeUp ' The wakeup event occurs when the battery charging is done.

For example,
WakeUp_Event_Mask = RS232_WakeUp|]Charging_WakeUp;
// wake up by RS-232 connection or battery charging events

extern U8 ProgVersion[16];

This character array can be used to store the version information of the user program.
» Such version information can be checked from the submenu: System Menu | Information.
Note that your C program needs to declare this variable to overwrite the system default setting.

For example,
const U8 ProgVersion[16] = “Power AP 1.007;

18

Chapter 2 Mobile-Specific Function Library

2.1.4 SYSTEM INFORMATION

These routines can be used to collect information on the components, either hardware or
software, of the mobile computer.

DeviceType
Purpose To get information of modular components in hardware.
Syntax void* DeviceType (void);
Example printf(“DEV:%s - %01d”, DeviceType(), KeypadLayout());
Return Value It always returns a pointer to where the information is stored.
Remarks The information of device type is displayed as “xxxx”; each is a digit ranging
from O to 9.
8600 Device Type Meaning

Oxxx No reader

Ixxx CCD scan engine

2XXX Laser scan engine

3XXX 2D scan engine

XOXX No wireless module

X5xx Bluetooth module

X8XX 802.11b/g/n + Bluetooth

XX0x No RFID

XX1X RFID module

XX2X GPS module

Xx3x RFID + GPS module
See Also KeypadLayout

19

CipherLab C Programming Part |

BootloaderVersion

Purpose
Syntax
Example
Return Value

See Also

To get the version information of bootloader.

void* BootloaderVersion (void);

printf(“BL:%s”, BootloaderVersion());

It always returns a pointer to where the information is stored.

LibraryVersion

FontVersion

Purpose
Syntax
Example

Return Value

To get the version information of font file.
void* FontVersion (void);

printf(“FONT:%s”, FontVersion);

It always returns a pointer to where the information is stored.

Remarks The font version is “System Font” by default. If any font file is loaded on the
mobile computer, its file name will be provided here as the version information.

See Also CheckFont

GetRFmode

Purpose To find out the current RF mode.

Syntax U32 GetRFmode (void);

Example GetRFmode();

Return Value

Remarks

The return value can be O — 8, depending on the capabilities of your mobile
computer.

Return Value

0x00 NO_RF_MODEL

0x04 MODE_802DOT11
0x05 MODE_BLUETOOTH
0x08 MODE_802DOT11_BT

HardwareVersion

Purpose
Syntax
Example

Return Value

To get the version information on hardware.
void* HardwareVersion (void);
printf(“H/W:%s”, HardwareVersion());

It always returns a pointer to where the information is stored.

KernelVersion

Purpose
Syntax
Example

Return Value

20

To get the version information of kernel.

void* KernelVersion (void);
printf(“KNL:%s”, KernelVersion());

It always returns a pointer to where the information is stored.

Chapter 2 Mobile-Specific Function Library

KeypadLayout

Purpose To get the layout information of keypad.

Syntax U16 KeypadLayout (void);

Example printf(“DEV:%s - %01d”, DeviceType(), KeypadLayout());

Return Value

It returns O for 29-key; 1 for 39-key.

LibraryVersion

Purpose
Syntax
Example

Return Value

To get the version information of mobile-specific library.
void* LibraryVersion (void);
printf(“LIB:%s”, LibraryVersion());

It always returns a pointer to where the information is stored.

See Also BootloaderVersion, NetVersion
ManufactureDate

Purpose To get the manufacturing date.

Syntax void* ManufactureDate (void);
Example printf(“M/D:%s”, ManufactureDate());

Return Value

It always returns a pointer to where the information is stored.

NetVersion

Purpose
Syntax
Example
Return Value

Remarks

See Also

To get the version information of external library.
void* NetVersion (void);
printf(“NetLIB:%s”, NetVersion());

It always returns a pointer to where the information is stored.

This routine gets the version information of external library, if there is any.

Otherwise, it gets the version information of mobile-specific library.

DeviceType, LibraryVersion, PPPVersion

OriginalSerialNumber

Purpose
Syntax
Example
Return Value

Remarks

See Also

To get the original serial number of the mobile computer.

void* OriginalSerialNumber (void);
printf(“S/N:%s””, OriginalSerialNumber());

It always returns a pointer to where the information is stored.

Note that if the original serial number is “???”, it means the serial number has

never been modified.

SerialNumber

21

CipherLab C Programming Part |

RFIDVersion

Purpose
Syntax
Example
Return Value

See Also

To get the version information of the RFID module.

void* RFIDVersion (void);

printf(“RFID:V%s”, RFIDVersion());

It always returns a pointer to where the information is stored.

DeviceType

SerialNumber

Purpose
Syntax
Example
Return Value

See Also

22

To get the current serial number of the mobile computer.
void* SerialNumber (void);

printf(“S/N:%s”, SerialNumber());

It always returns a pointer to where the information is stored.

OriginalSerialNumber

Chapter 2 Mobile-Specific Function Library

2.1.5 SECURITY

To provide System Menu with password protection so that unauthorized users cannot
gain access to it, you may either directly enable the password protection mechanism
from System Menu or through programming. In addition, a number of security-related
functions are available for using the same password to protect your own application.

CheckPasswordActive

Purpose To check whether the system password has been applied or not.
Syntax S32 CheckPasswordActive (void);
Example iT (CheckPasswordActive())

printf(“Please input password:"");
Return Value If applied, it returns 1.

Otherwise, it returns O to indicate no password is required.

Remarks By default, System Menu is not password-protected.
CheckSysPassword

Purpose To check whether the input string matches the system password or not.
Syntax S32 CheckSysPassword (const char *psw);

Example iT (ICheckSysPassword(szlnput))

printf(“Password incorrect!!!1”);
Return Value If the input string matches the system password, it returns 1.
Otherwise, it returns O.

Remarks If the system password has been applied and you want to use the same
password to protect your application, then this routine can be used to check if
the input string matches the system password.

InputPassword
Purpose To provide simple edit control for the user to input the password.
Syntax S32 InputPassword (char *psw);
Example char szPsw[10];

printf(*“Input password:"");

ifT (InputPassword(szPsw))

if (1CheckSysPassword(szPsw))

printf(**11legal password!”);

Return Value If the user input is confirmed by hitting [Enter], it returns 1.

If the user input is cancelled by hitting [ESC], it returns O.
Remarks Instead of showing normal characters on the display, it shows an asterisk (*)

whenever the user inputs a character.

23

CipherLab C Programming Part |

SaveSysPassword

Purpose To save or change the system password.
Syntax S32 SaveSysPassword (const char *psw);
Example SaveSysPassword(*“12345”);

Return Value If successful, it returns 1.

Otherwise, it returns O to indicate the length of password is over 8 characters.

Remarks The user is allowed to change the system password, but the length of password
is limited to 8 characters maximum.

» If the input string is NULL, the system password will be disabled.

24

Chapter 2 Mobile-Specific Function Library

2.1.6 PROGRAM MANAGER

Program Manager, being part of the kernel, is capable of managing multiple programs
(.shx).

Flash Memory (Program Manager)

It is possible to download multiple programs by calling LoadProgram().
> Up to 7 programs are allowed.

But only one of them can be activated by calling ActivateProgram(), and then the program gets
to running upon powering on.

SRAM (File System)

By calling DownLoadProgram(), programs can be downloaded to the file system as well. The
number of programs that can be downloaded depends on the size of SRAM or memory card, but it
cannot exceed 253. After downloading, the setting of ProgVersion[], if it exists, will be used to be
the default file name. Otherwise, it will be named as “Unknown” automatically. This file name may
be changed by rename if necessary.

» A program in the file system can be loaded to Program Manager (flash memory) by calling
UpdateBank(). Its file name, as well as the program version, will be copied to Program
Manager accordingly. Then it can be activated by calling ActivateProgram().

Alternatively, a program in the file system can be directly activated by calling UpdateUser(). If
the file system is not cleared, it allows options for removing the program from the file system.

Program Manager Menu

» Download Program/Download Font
This is finished by calling LoadProgram().

The “Download Via” options may vary by different models. Below are sample screenshots for
8630.

LoadProgram();

25

CipherLab C Programming Part |

»

26

Activate
This is finished by calling ActivateProgram().

ActivateProgram();

Upload Program/Upload Font/Upload All

Program Manager menu also allows users to upload programs/fonts to another mobile computer
or host computer. Three options as the picture shown above are provided:

3. Upload Program
5. Upload Font
6. Upload All

However, if the file name (ProgVersion[]) of a program is prefixed with a “#” symbol, it
means the program is protected, and therefore, uploading is not allowed.

Chapter 2 Mobile-Specific Function Library

ActivateProgram

Purpose To make a resident program become the active program (you may clear or
keep the original file system).
Syntax void ActivateProgram (U32 Prog, U32 mode);
Parameters U32 Prog
1—~6 (Max. 6 programs) Each stands for a resident program on
8600.
U32 mode
(0] KEEP_FILE_SYSTEM To keep the original file system.
1 CLEAR_FILE_SYSTEM To clear the original file system.
Example ActivateProgram(3, KEEP_FILE_SYSTEM);
// make program #3 become active and keep the file system
Return Value None
Remarks This routine copies the desired program (Prog) in flash memory from its
residence location to the active area, and thus makes it become the active
program.

» The original program resided in the active area will then be replaced by the
new program.

» The POWER key is disabled to protect the system while replacing the
program.

» If successful, the new program will be activated immediately. However, if
the execution continues running to the next instruction, it means the
operation of this routine fails.

See Also DeleteBank, LoadProgram, Programinfo, ProgramManager
DeleteBank
Purpose To delete a user program (.shx) from Program Manager (flash memory).
Syntax U32 DeleteBank (U32 slot);
Parameters U32 slot
1—~6 (Max. 6 slots) Each stands for a resident location on
8600.
Example if (DeleteBank(1))

printf(“Delete OK™);

else

printf(“Delete NG);
Return Value If successful, it returns 1.

Otherwise, it returns O.

See Also ActivateProgram, LoadProgram, UpdateBank

27

CipherLab C Programming Part |

DownLoadProgram

Purpose To download a user program (.shx) to the file system (SRAM).

Syntax U32 DownLoadProgram (S8 *filename, U32 comport, U32 baudrate);
Parameters S8 *filename

Pointer to a buffer where filename of the program is returned.

» This function returns the filename of the result file in SRAM. Need to
reserve a buffer with size of 9 bytes.

> If the file name is identical to an existing program, the execution will fail.
U32 comport

PORT_RS232

PORT_BLUETOOTH

PORT_USB

PORT_FASTVPORT

U32 baudrate

BAUD_115200 When the value of comport is PORT_RS232, Baud
rate setting must be specified appropriate. Specify

BAUD_76800 ‘0’ for other comport types.

BAUD_57600

BAUD_38400
BAUD_19200
BAUD_9600
BAUD_4800
Example val = DownLoadProgram(filename_buffer, PORT_RS232, BAUD_115200);

// download user program via PORT_RS232 at 115200 bps and return file
name to filename_buffer

Return Value If successful, it returns 1.
On error, it returns 0.
Otherwise, it returns -1 to indicate the action is aborted.

See Also UpdateBank, UpdateUser

28

Chapter 2 Mobile-Specific Function Library

LoadProgram
Purpose To download a user program (.shx) to flash memory.
Syntax void LoadProgram (U32 Prog);
Parameters U32 Prog
1—-6 (Max. 6 programs) Each stands for a resident program on
8600.
Example LoadProgram(3); // load the user program to location #3
Return Value None

Remarks

See Also

Upon calling this routine, the system exits the user application and enters
Program Manager | Download page immediately.

Simply choose “Download Via” and then “Baud Rate” in order to download the
user program to the specified location.

ActivateProgram, DeleteBank, ProgramlInfo, ProgramManager

Programinfo

Purpose
Syntax

Parameters

Example

Return Value

Remarks

See Also

To list program information.

U32 Programlnfo (U32 fn, S8 *type, S8 *prog_name);

u32 fn

1—~6 (Max. 6 slots) Each stands for a resident location on
8600.

S8 *type

Pointer to a buffer where program type is stored.
S8 *prog_name

Need to reserve a buffer with size of 13 bytes.

val = Programinfo(2, typebuffer, namebuffer);

If successful, it returns the bank size of program.
Otherwise, it returns O to indicate the program does not exist.
This routine retrieves program information including its size and name.

> The program size, in kilo-bytes, depends on how many memory banks one
program occupies.

» The program name is the same one as shown in the menu of Program
Manager.

» The file type will be returned with a small letter: “c” for a C program, “b”
for a BASIC program, and “f” for a font file.

» Since one bank is 64 KB, the return value will be 64, 128, ..., etc.

ActivateProgram, LoadProgram, ProgramManager

29

CipherLab C Programming Part |

ProgramManager

Purpose To enter the kernel and bring up the menu of Program Manager.

Syntax void ProgramManager (void);

Example ProgramManager(); // jump to the menu of Program Manager
Return Value None

Remarks Upon calling this routine, the user program stops running and jumps to the
kernel, and then Program Manager will take over the control.

See Also ActivateProgram, LoadProgram, ProgramIinfo

UpdateBank

Purpose To copy a user program (.shx or .bin) from the file system (SRAM or SD card)
to Program Manager (flash memory).

Syntax S32 UpdateBank (S8 *filename);

Parameters S8 *filename
Pointer to a buffer where filename of the program is stored.

Example val = UpdateBank(“PlayTest”); // update bank via a file in SRAM

Return Value

Remarks

See Also

30

val = UpdateBank(““A:\\PlayTest”); // update bank via a file on SD card
If successful, it returns the residence location of program (slot 1 ~ 6).
On error, it returns a negative value to indicate a specific error condition.

Return Value

-1 Failed to open file

-2 Invalid file format

-3 No free residence location in Program Manager
-4 No enough free flash

-5 Failed to read program code from source file
-6 Failed to erase/write flash

> If the file is stored in SRAM, the file name can be 8 bytes at most, which
does not include the null character.

» If the file name specified is identical to that of an existing program in flash
memory, the new program will replace the old one. Otherwise, it will be
stored in an automatically assigned residence location.

» If the file name has a prefix of “drive A”, such as “A:\\”, this routine will
search for the file on SD card. Refer to 2.14.2 Disk Name and Directory on
how to specify a file path. In this case, if the program version of the file
(“ProgVersion”) is identical to that of an existing program in flash memory,
the new program will replace the old one. Note that the file name of the
specified file on SD card will be ignored!

DeleteBank, DownLoadProgram, UpdateUser

Chapter 2 Mobile-Specific Function Library

UpdateKernel
Purpose To update the kernel program (.shx or .bin) by copying the update from the file
system (SRAM or SD card) to the kernel (flash memory).
Syntax U32 UpdateKernel (const S8 *filename, U32 mode, U32 remove_src);
Parameters const S8 *filename
Pointer to a buffer where filename of the program is stored.
U32 mode
(0] KEEP_FILE_SYSTEM To keep the SRAM file system.
1 CLEAR_FILE_SYSTEM To clear the SRAM file system.
U32 remove_src
(0] To keep the program in the file system.
1 To remove the program from the file
system.
Example val = UpdateKernel (*“C:\\8600K100”, KEEP_FILE_SYSTEM, 0);

Return Value

Remarks

See Also

// update kernel via a file in SRAM
val = UpdateKernel (““A:\\8600K100”, KEEP_FILE_SYSTEM, 0);

// update kernel via a file on SD card

If successful, the device will restart itself.

On error, it returns 0—~5 to indicate the error condition encountered.
Return Value

No file

Invalid file format

No enough free flash

Write flash error

Read file error

The update version is no greater than the current version.

Downgrade is not allowed!

v v 0ol N W N P O

It requires 128 KB free flash before successful execution. You may need to
delete some programs from the flash memory.

» If the file is stored on SD card, it requires 1.5 MB free SRAM file system
size before successful execution. You may need to delete some files.

> If the file is stored in SRAM, the file name can be 8 bytes at most, which
does not include the null character.

» For SD card, if the file name has a prefix of “A:\\”, this routine will search
for the file on SD card.

DownLoadProgram, UpdateUser

31

CipherLab C Programming Part |

UpdateUser
Purpose To make a user program (.shx or .bin), from the file system (SRAM or SD
card), become the active program.
Syntax U32 UpdateUser (const S8 *filename, U32 mode,...) ;
Parameters const S8 *filename
Pointer to a buffer where filename of the program is stored.
U32 mode
(0] KEEP_FILE_SYSTEM To keep the original file system.
1 CLEAR_FILE_SYSTEM To clear the original file system.
U32 remove_src
(0] To keep the program in the file system.
1 To remove the program from the file
system.
Example val = UpdateUser(“C:\\PlayTest”, KEEP_FILE_SYSTEM, 0);

Return Value

Remarks

32

// activate the program in SRAM, and keep the file system as well as
this program

val = UpdateUser(“A:\\PlayTest”, KEEP_FILE_SYSTEM, 0);

// activate the program on SD card, and keep the file system as well
as this program

If successful, the device will restart itself.
On error, it returns 0—3 to indicate the error condition encountered.

Return Value

(0] No file

1 Invalid file format

2 No enough free flash

3 File name length is out of limit

You may call UpdateUser (const S8 *filename, U32 mode) or UpdateUser
(const S8 *filename, U32 mode, U32 remove_src).

This routine copies the desired program from the file system directly to the
active area of Program Manager in flash memory, and thus makes it become
the active program. The original file system may be kept or cleared (mode). If
the file system is kept, the program may be removed from it (remove).

> If the file is stored in SRAM, the file name can be 8 bytes at most, which
does not include the null character.

» If the file is stored on SD card, the file name can be 64 bytes at most,
which includes the null character.

» The original program resided in the active area will then be replaced by the
new program.

» For SD card, if the file name has a prefix of “A:\\”, this routine will search
for the file on SD card.

Chapter 2 Mobile-Specific Function Library

» While replacing the program, the POWER key is disabled to protect the
system.

» If successful, the new program will be activated immediately. However, if
the execution continues running to the next instruction, it means the
operation of this routine fails.

See Also DownLoadProgram, UpdateBank

33

CipherLab C Programming Part |

2.1.7 DOWNLOAD MODE

DownLoadPage

Purpose To stop the application and force the program to jump to System Menu for
downloading new programs.

Syntax void DownLoadPage (void);
U32 DownLoadPage (S32 detect, S32 comtype, S32 baudrate);

Example open_com(1l, 0x80); // 115200, N, 8
DownLoadPage(); // enter “Download” mode

Return Value None

Remarks

34

This routine sets the mobile computer to the “Download” mode. The “Download
Via” page will be displayed, and the user can select the COM port and baud
rate for program downloading.

It is possible to pass arguments to suppress the download submenu.

» Parameter #1 (detect): The constant NO_MENU is a must.

> Parameter #2 (comtype): Communication type; refer to SetCommType.
» Parameter #3 (baudrate): Transmission baud rate; refer to open_com.
For example,
DownLoadPage(NO_MENU, COMM_DIRECT, BAUD_115200);

In this case, the mobile computer will be set to the “Ready to download” state
without prompting the download submenu.

2.1.8 MENU DESIGN

Chapter 2 Mobile-Specific Function Library

SMENU and MENU structures are defined in the header files. Users can simply fill the
MENU structure and call prc_menu to build a hierarchy menu-driven user interface.

MENU STRUCTURE

struct SMENU {
S32 total_entry;
S32 selected_entry;
S32 ReturnFlag;
u8™ title;

struct SMENU_ENTRY™> entry_list[14];

¥

typedef struct SMENU MENU;

Parameter

Description

S32 total_entry

S32 selected_entry

S32 ReturnFlag

us™* title
struct SMENU_ENTRY™* entry_list[14]

MENU_ENTRY STRUCTURE

struct SMENU_ENTRY {
S32 text_x;
S32 text_y;
U8™* text;

void (*func) (void);

The total number of the menu entries.
> 1-14

The item number of the selected entry.
> 1~ total_entry

The return flag can be 0 or 1.

(1) When the return flag is O, it will return to the current
menu after executing the function calls it contains or
pressing [ESC] to exit its sub-menus.

(2) When the return flag is 1, it will skip the current menu
after executing the function calls it contains or pressing
[ESC] to exit its sub-menus.

The title of this menu.

See MENU_ENTRY Structure

struct SMENU *sub_menu;

¥

typedef struct SMENU_ENTRY MENU_ENTRY;

35

CipherLab C Programming Part |

Parameter Description

S32 text_x X coordinate of this menu entry.

S32 text_y Y coordinate of this menu entry.

U8* text The title of this menu entry.

Void (*func) (void) The function to be executed when this menu entry is
selected.

struct SMENU *sub_menu The sub-menu to be executed when this menu entry is
selected.

prc_menu

Purpose To create a menu-driven interface.

Syntax S32 prc_menu (MENU *menu) ;

Parameters MENU *menu

SMENU and MENU structures are defined in the header files. Users can simply
fill the MENU structure and call prc_menu to build a hierarchy menu-driven
user interface.

Example
// Declare the MENU_ENTRY before the Menu reference
MENU_ENTRY Collect;
MENU_ENTRY Upload;
MENU_ENTRY Download;

MENU MyMenu={3, 1, 0, “My Menu”, {&Collect, &Upload, &Download}};

// Declare function before the MENU_ENTRY reference

void FuncCollect(void);

void FuncUpload(void);

void FuncDownload(void);

MENU_ENTRY Collect = {0, 1, “1. Collect”, FuncCollect, 0};
MENU_ENTRY Upload = {0, 2, “2. Upload”, FuncUpload, O0};
MENU_ENTRY Download = {0, 3, “3. Download”, FuncDownload, 0};

void FuncCollect(void)

{

// to do: add your own program code here
}

void FuncUpload(void)

{

// to do: add your own program code here

36

Return Value

Remarks

See Also

Chapter 2 Mobile-Specific Function Library

}

void FuncDownload(void))

{

// to do: add your own program code here
}

void main(void)
{

// state_menu
clr_scr(Q;
gotoxy(0, 0);
// Menu list

while (1)
{
prc_menu(&vyMenu) ; //* process MyMenu menu */
}
}

If the return flag in the MENU structure is 1, it returns 1.
Otherwise, it returns O to indicate the ESC key was pressed to abort operation.

This routine creates a user-defined menu. In addition to using [Up]/[Down]
and [Enter] keys to select an item, shortcut keys are provided. The first
character of each item title is treated as a shortcut key. In the above example,
1, 2, and 3 are shortcut keys for these three items (submenus) respectively.
That is, you can press [1] on the keypad to directly enter the submenu
“Collect”.

If the length of a string for a menu item exceeds the maximum characters
allowed in one line per screen, it will be divided into segments automatically.
Then, with the specified interval, these segments are displayed one by one.

GetMenuPauseTime, SetMenuPauseTime

37

CipherLab C Programming Part |

MENU PAUSE TIME

GetMenuPauseTime

Purpose

Syntax
Example
Return Value

See Also

To get the interval value for displays of fragments of a string when using
prc_menu.

U32 GetMenuPauseTime (void);
interval = GetMenuPauseTime();
If successful, it returns the interval value in units of 5 milli-seconds.

prc_menu

SetMenuPauseTime

Purpose
Syntax

Parameters

Example
Return Value

Remarks

See Also

38

To set interval between displays of fragments of a string when using prc_menu.
void SetMenuPauseTime (U32 time);

U32 time

Specify interval in units of 5 milli-seconds.

SetMenuPauseTime(200); // set display interval to 1 second
None

Varying by the screen size and the font size of alphanumeric characters, if the
length of a string for a menu item exceeds the maximum characters allowed in
one line per screen, it will be divided into segments automatically. Then, with
the specified interval, these segments are displayed one by one.

The pause time is set to 2 seconds by default.

prc_menu

Chapter 2 Mobile-Specific Function Library

2.1.9 INPUT

str_input

Purpose The function can store the characters entered from keypad or barcode reader
to a string buffer and show them on the screen.

Syntax S32 str_input(S8 *buf, S32 max_len);

Parameters S8 *buf

Return Value

Pointer to a buffer where the string is stored.
S32 max_len

Maximum length allowed for user input. The string buffer must not be shorter
than this value.

It returns the actual length of output string.

Negative values indicate the exception. Please see the remark below.

Remarks 1. The original image on the screen will be overwritten.
2. If input device is barcode reader, please turn it on before calling this
function.
3. Following keys are functioned during the operation.

KEY_CR To finish the operation and the typed characters are stored to
the string buffer. If there are not any characters, a negative
value -1 is returned.

KEY_BS To cancel the last input character.

KEY_ESC To abort the operation, characters are not stored. -1 is
returned.

KEY_F3 To erase the stored string and the operation goes on.

See Also int_input, ip_input

int_input

Purpose The function converts the characters entered from keypad to an integer and
shows it on the screen.

Syntax S32 int_input(S32 max_digits);

Parameters S32 max_digits

Return Value

Number of characters to be entered. i.e. The number of integral digits. It takes
an optional initial plus or minus sign followed by as many base-10 digits as
possible.

With success, the function returns the converted integral number as an int
value. Else, a negative value is returned.

39

CipherLab C Programming Part |

Remarks 1. The original image on the screen will be overwritten.
2. Following keys are functioned during the operation.
KEY_CR To finish the operation and the typed characters are
converted to returned value.
If no key is entered or an invalid max_digits is set, -1 is
returned.
KEY_BS To cancel the last input character.
KEY_ESC To abort the operation. -2 is returned.
KEY_F3 To erase all entered characters and the operation goes on.
See Also str_input, ip_input
ip_input
Purpose The function can store the IP entered from keypad or barcode reader to a
4-element buffer and show it on the screen.
Syntax S32 ip_input(U8 *buf);
Parameters U8 *buf

Return Value

Remarks

See Also

40

Pointer to a buffer where the IP is stored.

It returns 1 if success.

It returns a negative value related to the key operation.
1. The original image on the screen will be overwritten.

2. If input device is barcode reader, please turn it on before calling this
function.

3. a dot ‘.’ is auto shown after a 3 digits number is entered.
4. Following keys are functioned during the operation.

KEY_CR To finish the operation and the typed data are stored to IP
buffer.

If KEY_CR is pressed before any data is input, it indicates to
keep the original data in user’'s buffer. 0 is returned.
Otherwise, it means to ignore the unfinished data and abort
the operation. In this case, -2 is returned.

KEY_BS To cancel the last input character.
KEY_ESC To abort the operation. -2 is returned.
KEY_F3 To erase all entered characters and the operation goes on.

str_input, int_input

Chapter 2 Mobile-Specific Function Library

2.2 BARCODE READER

The barcode reader module provides options for a number of scan engines as listed
below.

Scan Engine: “v” means supported 8600 Series
1D CCD (linear imager) v
Standard Laser v
2D 2D imager v
2.2.1 BARCODE DECODING

Below are four global variables related to the barcode decoding routines. These variables
are declared by the system, and therefore the user program need not declare them.

extern U8 ScannerDesTbI[83];

The operation of the Decode() routine is governed by this unsigned character array.
» Refer to Appendix | and Il for details of the variable ScannerDesTbl.

» Only the first 43 bytes are used currently, and the rest is reserved!

Note: For 2D scan engine, it is necessary to enable new settings by calling
ConfigureReader().

extern U8 CodeBuf[1;

After successful decoding, the decoded data is stored in this buffer.

extern U8 CodeType;

After successful decoding, the code type (for a symbology being decoded) is stored in this variable.

extern U16 Codelen;

After successful decoding, the length of the decoded data is stored in this variable.

To enable barcode decoding capability in the system, the first thing is that the scanner
port must be initialized by calling the InitScanner1() function. After the scanner port is

initialized, the Decode() function can be called in the program loops to perform barcode
decoding.

» For CCD or Laser scan engine, the barcode decoding routines consist of 3 functions:
InitScanner1(), Decode(), and HaltScannerl1().

» For 2D scan engine, it is necessary to enable new settings by calling
ConfigureReader() before InitScannerl().

41

CipherLab C Programming Part |

extern unsigned char FSEAN128[2];

This global array inserted between adjacent Application ID (AID) fields as the field separator is
used for GS1 formatting.

extern unsigned char AlMark[2];

This global array is used for indicating Application ID Mark (AID Mark). AlMark[0] will be placed at
the left of AID, and AlMark[1] at the right of AID.

42

Chapter 2 Mobile-Specific Function Library

ConfigureReader

Purpose

Syntax

Example

Return Value

Remarks

See Also

To enable new settings on the scan engine according to the ScannerDesTbl
array.

U32 ConfigureReader (void);

memcpy(ScannerDesTbl, DefaultSetting, sizeof(DefaultSetting));
if (ConfigureReader())

printf(“Set OK™);

else

printf(“Set NG”);

If successful, it returns 1.

Otherwise, it returns O.

For new settings of ScannerDesTbl to take effect on 2D scan engine, it is
necessary to call this function.

Note that this function shall be called before InitScannerl() or after
HaltScannerl.

ScannerDesTbl

ConfigureReaderRAM

Purpose

Syntax

Parameters

Example

Return Value

Remarks

See Also

To update settings at any one time and take effect immediately without
rebooting the decoder board.

U32 ConfigureReaderRAM (READER_CFG_SET *pReaderSet, U16
elements);

typedef struct {

U8 OffsetByte; //target byte of setting table
U8 MaskBit; //used bit is 1, for example, 0x38 = bit 5~3
U8 Value;

} READER_CFG_SET;

READER_CFG_SET setl[]=

{{43, Ox1E, 10}, //illumination brightness level=10
{40, 0x08, 1}}; //enable pick list mode

ConfigureReaderRAM(setl, 2)

If successful, it returns 1.

Otherwise, it returns O.

This function applies to 2D reader only.

ScannerDesTbl

The differences between ConfigureReader() and ConfigureReaderRAM() are depicted

in the table below.

43

CipherLab C Programming Part |

Features

ConfigureReader()

ConfigureReaderRAM()

Flash memory updating

Power remains during updating

Reboot time

Configuration synchronous

Yes.

This function always updates
the flash memory with
ScannerDesTbl[] settings.

Yes.

The power has to remain
during updating the flash.

Yes.

It takes about 3—~5 seconds
to complete the configuration.

Yes.

Calling this function keeps the
flash memory the same as
ScannerDesTble[] settings all
the time.

No need.

This function only maintains
the ScannerDesTbl[] array.

No need.

No need.

The configuration will take
effect immediately. Therefore,
updating settings can take
place at any time without
waiting.

No.

ScannerDesTble[] settings will
be lost after the mobile
computer powers off.

Decode

Purpose To perform barcode decoding.
Syntax U32 Decode (void);
Example while(1) {

if (Decode())

break;

}

Return Value

the decoded data.

Otherwise, it returns O.

If successful, it returns an integer whose value equals to the string length of

Once the scanner port is initialized by calling InitScannerl(), call this routine to

» This routine should be called constantly in user program loops when
barcode decoding is required.

» If barcode decoding is not required for a long period of time, it is
recommended that the scanner port should be stopped by calling

» If the Decode function decodes successfully, the decoded data will be
placed in the string variable CodeBuf[] with a string terminating character
appended. And integer variable CodelLen, as well as the character variable
CodeType will reflect the length and code type of the decoded data

Remarks
perform barcode decoding.
HaltScannerl1().
respectively.
See Also

44

HaltScannerl, InitScannerl

Chapter 2 Mobile-Specific Function Library

HaltScannerl

Purpose To stop the scanner port from operating.

Syntax void HaltScannerl (void);

Example HaltScannerl();

Return Value Once the scanner port is stopped from operating by this routine, it cannot be

restarted unless it is initialized again by calling InitScanner1().

» It is recommended that the scanner port should be stopped if barcode
decoding is not required for a long period of time.

Remarks None

See Also Decode, InitScannerl

InitScannerl

Purpose To initialize the scanner port.
Syntax void InitScannerl (void);
Example InitScannerl();
while(1) {
it (Decode())
break;
}
Return Value The scanner port will not work unless it is initialized.
Remarks None
See Also Decode, HaltScannerl

45

CipherLab C Programming Part |

2.2.2 CODE TYPE

The following tables list the values of the variable CodeType.

Note: For CCD or Laser scan engine, the variable OrgCodeType is provided for
identifying the original code type when a conversion has occurred.

CodeType Table I:

DEC ASCII Symbology Supported by Scan Engines
63 ? Coop 25 CCD, Laser
64 @ ISBT 128 CCD, Laser
65 A Code 39 CCD, Laser
66 B Italian Pharmacode CCD, Laser
67 C CIP 39 (French Pharmacode) CCD, Laser
68 D Industrial 25 CCD, Laser
69 E Interleaved 25 CCD, Laser
70 F Matrix 25 CCD, Laser
71 G Codabar (NW7) CCD, Laser
72 H Code 93 CCD, Laser
73 | Code 128 CCD, Laser
74 J UPC-EO / UPC-E1 CCD, Laser
75 K UPC-E with Addon 2 CCD, Laser
76 L UPC-E with Addon 5 CCD, Laser
77 M EAN-8 CCD, Laser
78 N EAN-8 with Addon 2 CCD, Laser
79 (@] EAN-8 with Addon 5 CCD, Laser
80 P EAN-13 7/ UPC-A CCD, Laser
81 Q EAN-13 with Addon 2 CCD, Laser
82 R EAN-13 with Addon 5 CCD, Laser
83 S MSI CCD, Laser
84 T Plessey CCD, Laser
85 U GS1-128 (EAN-128) CCD, Laser
86 \Y, Reserved -—-

87 W Reserved ---

88 X Reserved ---

89 Y Reserved ---

90 Z Telepen CCD, Laser

46

Chapter 2 Mobile-Specific Function Library

91 [GS1 DataBar (RSS) CCD, Laser
92 \ Reserved -—-
93 1 Reserved -

A variable, OrgCodeType, is provided for identifying the original code type when a
conversion has occurred.

For example, if “Convert EAN-8 to EAN-13” is enabled, an EAN-8 barcode is decoded to
EAN-13 barcode. Its code type is EAN-13 now and the original code type is EAN-8.

OrgCodeType Table:

DEC ASCII Symbology Supported by Scan Engine
65 A UPC-E CCD, Laser
66 B UPC-E with Addon 2 CCD, Laser
67 C UPC-E with Addon 5 CCD, Laser
68 D EAN-8 CCD, Laser
69 E EAN-8 with Addon 2 CCD, Laser
70 F EAN-8 with Addon 5 CCD, Laser
71 G EAN-13 CCD, Laser
72 H EAN-13 with Addon 2 CCD, Laser
73 | EAN-13 with Addon 5 CCD, Laser
74 J UPC-A CCD, Laser
75 K UPC-A with Addon 2 CCD, Laser
76 L UPC-A with Addon 5 CCD, Laser
0 NUL None CCD, Laser

a7

CipherLab C Programming Part |

CodeType Table 11I:

DEC ASCII Symbology Supported by Scan Engine
47 / Composite_CC_A 2D
55 7 Composite_CC_B 2D
65 A Code 39 2D
66 B Code 32 (Italian Pharmacode) 2D
67 C N/A ---
68 D N/A —
69 E Interleaved 25 2D
70 F Matrix 25 2D
71 G Codabar (NW7) 2D
72 H Code 93 2D
73 | Code 128 2D
74 J UPC-EO 2D
75 K UPC-E with Addon 2 2D
76 L UPC-E with Addon 5 2D
77 M EAN-8 2D
78 N EAN-8 with Addon 2 2D
79 0] EAN-8 with Addon 5 2D
80 P EAN-13 2D
81 Q EAN-13 with Addon 2 2D
82 R EAN-13 with Addon 5 2D
83 S MSI 2D
84 T N/A ---
85 U GS1-128 (EAN-128) 2D
86 \% Reserved ---
87 w Reserved ---
88 X Reserved -—-
89 Y Reserved ---
90 z Reserved ---
91 [GS1 DataBar Omnidirectional (RSS-14) 2D
92 \ GS1 DataBar Limited (RSS Limited) 2D
93] GS1 DataBar Expanded (RSS Expanded) 2D
94 ~ UPC-A 2D
95 _ UPC-A Addon 2 2D
96 ‘ UPC-A Addon 5 2D

48

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126

- T a -

—

O T

-

UPC-E1

UPC-E1 Addon 2
UPC-E1 Addon 5
TLC-39 (TCIF Linked Code 39)
Trioptic (Code 39)
Bookland (EAN)
Code 11

Code 39 Full ASCII
IATANO® (25)
Industrial 25 (Discrete 25)
PDF417
MicroPDF417

Data Matrix
Maxicode

QR Code

US Postnet

US Planet

UK Postal

Japan Postal
Australian Postal
Dutch Postal
Composite Code
Composite_CC_C
Macro PDF417
Macro MicroPDF417
Chinese 25

Aztec

MicroQR

Chapter 2

2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D

2D
2D
2D
2D
2D

USPS 4CB / One Code / Intelligent Mail 2D

UPU FICS Postal

Coupon Code

2D
2D

Mobile-Specific Function Library

Note: IATA stands for International Air Transport Association, and this barcode type is

used on flight tickets.

49

CipherLab C Programming Part |

2.2.3 SCANNER DESCRIPTION TABLE

The unsigned character array ScannerDesTbl (=Scanner Description Table) governs the
behavior of the Decode() function. Refer to Appendix | for two tables that describe the
details of the variable ScannerDesTbl:

» Table I is for the use of CCD or Laser scan engine.
» Table Il is for the use of 2D scan engine.

For specific symbology parameters, refer to Appendix Il. For scanner parameters, refer
to Appendix 1.

50

Chapter 2 Mobile-Specific Function Library

2.3 RFID READER

The mobile computer allows an optional RFID reader that can coexist with the barcode
reader, if there is any.

» External Libraries Required for RFID

Series Hardware Configuration

8600 8600 — Batch + RFID
8660 — Bluetooth + RFID
8630 — 802.11b/g/n + Bluetooth + RFID

The RFID reader supports read/write operations, which depend on the tags you are using.
Supported labels include 1SO 15693, Icode®, ISO 14443A, and ISO 14443B. The
performance of many tags has been confirmed, and the results are listed below.

Warning: Before programming, you should study the specifications of RFID tags.

Tag Type UID only Read Page Write Page
TAG_MifarelSO14443A

Mifare Standard 1K
Mifare Standard 4K
Mifare Ultralight
Mifare DESFire
Mifare S50
SLE44R35

NN N N NN

SLEG6R35
TAG_SR176
SRIX 4K

SR176
TAG_1S015693
ICODE SLI
SRF55V02P
SRF55V02S
SRF55V10P

AN NN

TI Tag-it HF-1
TAG__Icode
ICODE v v 4

Note: These are the results found with RFID module version 1.0 (v for features
supported), and you may use RFIDVersion() to find out version information.

51

CipherLab C Programming Part |

2.3.1 VIRTUAL COM

The algorithm for programming the RFID reader simply follows the routines related to
COM ports. The virtual COM port for RFID is defined as COM4. Thus,

» open_com (4, U32) : initialize and enable the RFID COM port

(parameter U32 can be any integer value)
» close_com (4) : terminate and disable the RFID COM port
» read_com (4, U8%*) : read data of card from RFID COM port

> write_com (4, U8*) : write data of card through RFID COM port

The return values for some related functions are described below.

Function Return Value
read_com (4, U8%*) -1 No Tag
-2 Get Tag fail
-3 Get Tag Page fail
-5 Authentication fail
0 — xx Data Length
com_eot (4) -1 No Tag
-2 Get Tag fail
-3 Get Tag Page fail
-4 Write Tag Page fail
-5 Authentication fail
0 Other errors
1 Success

52

Chapter 2 Mobile-Specific Function Library

2.3.2 RFID PARAMETER STRUCTURE

Before reading and writing a specific tag, the parameters of RFID must be specified by
calling RFIDReadFormat() and RFIDWriteFormat().

Parameter Description
U8 TagType[4] » TagType[O]
Bit7 ~6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
Reserved 1SO SR176 ISO Icode Tagit 1SO
14443B 14443A 15693

» TagType[1—3]: Reserved
U32 StartByte The starting byte of data for the read/write operation.
U32 MaxLen » Read: The maximum data length (1~255).
0 refers to reading UID data only.
> Write: Reserved (Any integer value is acceptable.)
U8 scanMode 0: RFID_TESTING_MODE (default)

1: RFID_SINGLE_MODE (Press the trigger key for a single Inventory
operation)

Have the altered scan mode take effect before calling open_com().
U8 scanTimeout 1~255 (in seconds, 3 is set by default)
U8 Reserve[18] Reserved

2.3.3 RFID DATA FORMAT

The data format for read_com() is as follows.

Byte O Byte 1 ~ 17 Byte 18 ~ xx
Tag Type V' TAG_1S015693
T TAG_Tagit
‘r TAG_Icode Tag UID (SN) Data
‘M’ TAG_MifarelSO14443A
) TAG_SR176
‘Z TAG_1S014443B

53

CipherLab C Programming Part |

RFIDReadFormat

Purpose To set the reading parameters of RFID.
Syntax void RFIDReadFormat (RFIDParameter *source);
Parameters RFIDParameter *source

Specify the parameters for the reading operation.
Example parameter.TagType[0] = Ox3f; // all supported tag types are enabled
parameter.StartByte = 0O;
parameter _MaxLen = 150;
RFIDReadFormat(¶meter);
Return Value None

Remarks The parameters must be specified before the reading operation.

RFIDWriteFormat

Purpose To set the writing parameters of RFID.
Syntax void RFIDWriteFormat (RFIDParameter *source);
Parameters RFIDParameter *source

Specify the parameters for the writing operation.

Example parameter.TagType[0] = O0x01; // tag type ISO 15693 is enabled
parameter.StartByte = O;
parameter.MaxLen = O; // any integer value
RFIDWriteFormat(¶meter);

Return Value None

Remarks The parameters must be specified before the writing operation.

54

Chapter 2 Mobile-Specific Function Library

2.3.4 RFID AUTHENTICATION

GetRFIDSecurityKey

Purpose To check the status of security key for some specific tags.
Syntax S32 GetRFIDSecurityKey (U8 TagType, U8 *KeyString, U8 *KeyType);
Parameters U8 TagType

‘v’ TAG_I1S015693 Refer to the table in section 2.3 for more

T TAG. Tagit information on tag types.

‘r TAG_Icode

‘M’ TAG_MifarelSO14443A

‘'S’ TAG_SR176

‘z’ TAG_1S014443B

U8 *KeyString

Pointer to a buffer where key value (string) is stored.

U8 *KeyType

Pointer to a buffer where key type is stored.

it (1GetRFIDSecurityKey(TAG MifarelS014443A, key buffer, &keytype))

Example
{
printf(“No Sefurity Key.”);
}
Return Value If any key exists, it returns 1.
Otherwise, it returns O.
Remarks This routine is used to find out if there is a security key for some specific tag,

such as Mifare Standard 1K/4K or SLE66R35 tag.

55

CipherLab C Programming Part |

SetRFIDSecurityKey

Purpose To set the security key of some specific tags.
Syntax void SetRFIDSecurityKey (U8 TagType, U8 *KeyString, U8 KeyType);
Parameters U8 TagType

‘v’ TAG_I1S015693 Refer to the table in section 2.3 for more

T TAG. Tagit information on tag types.

‘r TAG_Icode

‘M’ TAG_MifarelSO14443A
‘'S’ TAG_SR176

‘z’ TAG_1S014443B

U8 *KeyString

Pointer to a buffer where key value (string) is stored.

U8 KeyType

1 MIFARE_KEYA Key A for Mifare tags

2 MIFARE_KEYB Key B for Mifare tags
Example SetRFIDSecurityKey(

TAG_MifarelS014443A, “FFFFFFFFFFFF”, MIFARE_KEYA);
// set Key A with a specified value for 1S014443A tags
Return Value None

Remarks This routine is used to set security key for some specific tags, such as Mifare
Standard 1K/4K and SLE66R35 tags.

56

Chapter 2 Mobile-Specific Function Library

APDU FEEDBACK STRUCTURE

typedef struct {
U16 LEN;
U8 szSAMfbData[120];
U8 sSwi;
U8 swz;
struct SMENU *sub_menu;
} APDU_FEEDBACK;
extern APDU_FEEDBACK apdu_feedback;

Parameter Description

LEN length of response data from SAM
szSAMfbData Response data from SAM

Swi Status word 1

SW2 Status word 2

ApduSAM

Purpose To send APDU command to SAM.

Syntax U8 ApduSAM((U8 *ApduData, U8 ApdulLen);
Parameters U8 *ApduData

Pointer of APDU command

U8 ApdulLen

Length of APDU command
Example ret=ApduSAM(pCommand, cmdLen);
Return Value If successful, it returns 1.

On fail, it returns 0. apdu_feedback.SW1 & apdu_feedback.SW2 show fail

reason.
Remarks The content of ApduData[] must follow APDU transmission format.
ResetSAM

Purpose To reset SAM.

Syntax U8 ResetSAM(void);

Parameters none

Example ResetSAM();

Return Value none

57

CipherLab C Programming Part |

2.4 KEYBOARD WEDGE

You may use Bluetooth HID or USB HID for the Wedge application. Refer to the table
below and Part 11: Appendix 111 Examples (Bluetooth HID and USB HID sections).

Wedge Options Related Functions
Bluetooth HID or USB HID WedgeSetting array
SetCommType()

open_com()
com_eot()
write_com()
nwrite_com()

close_com()

Wedge setting array:

extern U8 WedgeSetting[3];

58

Chapter 2 Mobile-Specific Function Library

2.4.1 DEFINITION OF THE WEDGESETTING ARRAY

Subscript Bit Default | Description
0 7-0 1 KBD / Terminal Type
1 7 0 0: Disable capital lock auto-detection
1: Enable capital lock auto-detection
1 6 0 0: Capital lock off
1: Capital lock on
1 5 0 0: Alphabets are case-sensitive
1: Ignore alphabets’ case
1 4 -3 00 00: Normal
10: Digits at lower position
11: Digits at upper position
1 2-1 00 00: Normal
10: Capital lock keyboard
11: Shift lock keyboard
1 0 0 0: Use alpha-numeric key to transmit digits
1: Use numeric keypad to transmit digits
2 7 0 0: Extended ASCII Code
1: Combination Key
2 6-1 0 Inter-character delay (unit: 5ms)
2 0 1 HID Character Transmit Mode

0: Batch processing

1: By character

1ST ELEMENT: KBD / TERMINAL TYPE

The possible values of WedgeSetting[0] are listed below. It determines which type of
keyboard wedge is applied.

Setting Value Terminal Type Setting Value | Terminal Type

0 Null (Data Not Transmitted) 8 PCAT (BE)

1 PCAT (US) 9 PCAT (SP)

2 PCAT (FR) 10 PCAT (PO)

3 PCAT (GR) 11 IBM A01-02 (Japanese OADG109)
4 PCAT (IT) 12 PCAT (Turkish)

5 PCAT (SV) 13 PCAT (Hungarian)

6 PCAT (NO) 14 PCAT (Swiss(German))

59

CipherLab C Programming Part |

7 PCAT (UK) 15 PCAT (DA)

For example, if the terminal type is PCAT (US), then the first element of the
WedgeSetting can be defined as follows —

WedgeSetting[0] = 1

2ND E] EMENT

Capital Lock Auto-Detection

Keyboard Type Capital Lock Auto-Detection

PCAT (all available Enabled Disabled
languages), PS2-30, PS55,

or Memorex Telex write_com() can automatically write_com() will transmit

detect the capital lock status of alphabets according to the
keyboard. That is, it will ignore setting of the capital lock status.
the capital lock status setting and

perform auto-detection when

transmitting data.

None of the above write_com() will transmit the alphabets according to the setting of
the capital lock status, even though the auto-detection setting is
enabled.

> To enable “Capital Lock Auto-Detection”, add 128 to the value of the second element of the
WedgeSetting array.

Capital Lock Status Setting

In order to send alphabets with correct case (upper or lower case), the write_com() routine must
know the capital lock status of keyboard when transmitting data.

Incorrect capital lock setting will result in different letter case (for example, ‘A’ becomes ‘a’, and
‘a’ becomes ‘A’).

> To set “Capital Lock ON”, add 64 to the value of the second element of the WedgeSetting
array.

Alphabets’ Case

The setting of this bit affects the way the write_com() routine transmits alphabets.
write_com() can transmit alphabets according to their original case (case-sensitive) or just
ignore it. If ignoring case is selected, write_com() will always transmit alphabets without adding
shift key.

> To set “Ignore Alphabets Case”, add 32 to the value of the second element of the
WedgeSetting array.

Digits’ Position

60

Chapter 2 Mobile-Specific Function Library

This setting can force the write_com() routine to treat the position of the digit keys on the
keyboard differently. If this setting is set to upper, write_com() will add shift key when
transmitting digits. This setting will be effective only when the keyboard type selected is PCAT (all
available language), PS2-30, PS55, or Memorex Telex. However, if the user chooses to send digits
using numeric keypad, this setting is meaningless.

> To set “Lower Position”, add 16 to the value of the second element of the WedgeSetting
array.

> To set “Upper Position”, add 24 to the value of the second element of the WedgeSetting
array.

Shift / Capital Lock Keyboard

This setting can force the write_com() routine to treat the keyboard type to be a shift lock
keyboard or a capital lock keyboard. This setting will be effective only when the keyboard type
selected is PCAT (all available languages), PS2-30, PS55, or Memorex Telex.

> To set “Capital Lock”, add 4 to the value of the second element of the WedgeSetting array.
> To set “Shift Lock”, add 6 to the value of the second element of the WedgeSetting array.

Digit Transmission

This setting instructs the write_com() routine which group of keys is used to transmit digits,
whether to use the digit keys on top of the alphabetic keys or use the digit keys on the numeric
keypad.

> To set “Use Numeric Keypad to Transmit Digits”, add 2 to the value of the second element of
the WedgeSetting array.

Note: DO NOT set “Digits’ Position” and “Shift/Capital Lock Keyboard” unless you are

certain to do so.

3RD ELEMENT: INTER-CHARACTER DELAY

The inter-character delay time, ranging from O to 315 milliseconds, can be added before
transmitting each character. This is used to provide some response time for PC to
process keyboard input.

For example, to set the inter-character delay to 10 milliseconds, the third element of the
WedgeSetting array can be defined as,

WedgeSetting[2] = 2<<1; //2*5ms=10ms, bit 6 ~ 1

2.4.2 COMPOSITION OF OUTPUT STRING

The mapping of the keyboard wedge characters is listed below. Each character in the
output string is translated by this table when the write_com() routine transmits data.

61

CipherLab C Programming Part |

00 10 20 30 40 50 60 70 80
0 F2 sp 0 @ P - p ®
1 INS F3 ! 1 A Q a q @
2 DLT F4 “ 2 B R b r @
3 Home F5 # 3 C S c s ®
4 End F6 $ 4 D T d t @
5 Up F7 % 5 E U e u ®
6 Down F8 & 6 F \% f % ®
7 Left FO 7 G W w @
8 BS F10 (8 X X
9 HT F11) 9 I Y i y ®
A LF F12 * J Z j z
B Right ESC + : K [k {
C PgUp Exec : < L \ | |
D CR CR* - = M] m 3}
E PgDn . > N ~ n -
F F1 / 2 o) B 0 Dly ENTER*

Note: (1) Dly: Delay 100 milliseconds
(2) ©—~®: Digits of numeric keypad
(3) CR*/ENTER*: ENTER key on the numeric keypad

The write_com() routine not only transmit simple characters as shown above, but also
provide a way to transmit combination key status, or even direct scan codes. This is done
by inserting some special command codes in the output string. A command code is a
character whose hexadecimal value is between 0xCO and OxFF.

0xCO : Indicates that the next character is to be treated as scan code. Transmit it as it is,
no translation required.

OxCO | Ox01 : Send next character with Shift key.
OxCO | Ox02 : Send next character with Left Ctrl key.
OxCO | Ox04 : Send next character with Left Alt key.

OxCO | Ox08 : Send next character with Right Ctrl key.

62

Chapter 2 Mobile-Specific Function Library

OxCO | 0x10 : Send next character with Right Alt key.
OxCO | Ox20 : Clear all combination status keys after sending the next character.

For example, to send [A] [Ctri-Insert] [5] [scan code 0x29] [Tab] [2] [Shift-Ctrl-A] [B]
[Alt-1] [Alt-2-Break] [Alt-1] [Alt-3], the following characters are inserted into the string
supplied to the write_com() routine.

0x41, 0xC2, 0x01, 0x35, OxCO, 0x29, 0x09, 0x32, OxC3, 0x41, 0x42, OxC4, 0x31
OxE4, 0x32, OxC4, 0x31, 0xC4, 0x33

Note: (1) The scan code 0x29 is actually a space for PCAT, Alt-12 is a form feed
character, and Alt-13 is an Enter.

(2) The break after Alt-12 is necessary; if omitted, the characters will be treated
as Alt-1213 instead of Alt-12 and Alt-13.

63

CipherLab C Programming Part |

2.5 BUZZER

This section describes the routines manipulating the buzzer. The activation of the buzzer
is conducted by specifying a beep sequence, which comprises a number of beep
frequency and beep duration pairs. Once on_beeper() or play() is called, the activation
of the buzzer is automatically handled by the background operating system. There is no
need for the application program to wait for the buzzer to stop. Yet, beeper_status()
and off _beeper() are used to determine whether a beep sequence is undergoing or is to
be terminated immediately.

2.5.1 BEEP SEQUENCE

A beep sequence is an integer array that is used to instruct how the buzzer is activated.
It comprises a number of pairs of beep frequency and duration. Each pair is one beep.

Beep Sequence = Beep Frequency, Beep Duration, ...
2.5.2 BEEP FREQUENCY

A beep frequency is an integer that is used to specify the frequency (tone) of the buzzer
when it is activated. However, the value of the beep frequency is not the actual
frequency that the buzzer generates. It is calculated by the following formula:

Beep Frequency = 76000 / Actual Frequency Desired

For example, if a frequency of 4 KHz is desired, the value of beep frequency should be 19.

Suitable frequency range is from 1 KHz to 6 KHz, whereas the peak is at 4 KHz. If no
sound is desired (pause), the beep frequency should be set to O.

Note: A beep sequence with frequency set to O causes the buzzer to pause, not to stop.

2.5.3 BEEP DURATION

Beep duration is an integer that is used to specify how long a buzzer will be working at a
specified beep frequency; it is specified in units of 0.01 second. To have the buzzer work
for one second, the beep duration should be set to 100.

Note: When the value of beep duration is set to O, it will end a beep sequence; the
buzzer will stop working.

64

Chapter 2 Mobile-Specific Function Library

beeper_status

Purpose
Syntax
Example

Return Value

To check if a beep sequence is in progress.

S32 beeper_status (void);

while (beeper_status()); // wait till a beep sequence is completed
If beep sequence is undergoing, it returns 1.

Otherwise, it returns O.

get_beeper_vol

Purpose
Syntax
Example

Return Value

To get the volume of beeper.
S32 get_beeper_vol (void);
val = get_beeper_vol(); // get the volume level

It returns the volume level.

set_beeper_vol

Purpose
Syntax

Parameters

Example

Return Value

To set the volume of beeper.

void set_beeper_vol (S32 level);

S32 level
O MUTE_VOL Set the volume level to “Mute”
1 LOW_VOL Set the volume level to “Low”

2 MEDIUM_VOL Set the volume level to “Medium”

3 HIGH_VOL Set the volume level to “High”
set_beeper_vol(1); // set the volume level to “Medium”
None

65

CipherLab C Programming Part |

on_beeper

Purpose
Syntax

Parameters

Example (1)
Example (2)

Example (3)

Return Value

Remarks

To specify a beep sequence of how a buzzer works, or to play a wave table.
unsigned char on_beeper (const void *buffer);

const U16 *sequence

Pointer to a buffer where a beep sequence is stored.

const void *buffer

Pointer to a buffer where

(1) a beep sequence is stored, or

(2) a wave table is stored, or

(3) the file name of a wave file on SD card is stored. Filename needs to have
a prefix, such as “A:\\”, “a:\\", “A:/”, or “a:/”.

const U16 two_beeps [] = {19, 10, 0, 10, 19, 10, 0, O};
on_beeper (two_beeps);
on_beeper (“A:\\Sound.wav’);

on_beeper(“A:\\Sound™) ;

// play a wave file from SD card on 8600

// Filename extension is optional

(0] Success
1 Invalid file format
2 Fail to open file on SD Card

This routine specifies a beep sequence to instruct how a buzzer works. If there
is a beep sequence already in progress, the later will override the original one.

The supported audio file format is *.wav files, which meet the following
requirements:

» NumcChannels: mono or stereo
» SampleRate: 8000, 11025, 22050, 32000, 44100
> BitsPerSample: 8 bits or 16 bits

off _beeper

Purpose
Syntax
Example

Return Value

66

To terminate a beep sequence immediately if it is in progress.
void off _beeper (void);
off_beeper();

None

Chapter 2 Mobile-Specific Function Library

play

Purpose To play melody by specifying a sequence of how a buzzer works.
Syntax void play (const S8 *sequence);

Parameters const S8 *sequence

Pointer to a buffer where a melody sequence is stored.
Example const S8 song [] = {Ox31, 10, 0x32, 10, 0x33, 10, 0x34, 10,
0x35, 10, 0x36, 10, O0x37, 10, 0x41, 10,
0x31, 4, 0x32, 4, 0x33, 4, 0x34, 4,
0x35, 4, 0x36, 4, 0x37, 4, 0x41, 4, 0x00, Ox00} ;

play(song);
Return Value None
Remarks This routine is similar to on_beeper(). However, the frequency character is
specified as:
Bit 7 6 5 4 3 2 1 0
Reserved | Frequency for A (La) Scale # key Musical Scale
000: Reserved O: disable | 000: Reserved
001(1): 55 Hz 1: enable 001(1): Do
010(2): 110 Hz 010(2): Re
011(3): 220 Hz 011(3): Mi
100(4): 440 Hz 100(4): Fa
101(5): 880 Hz 101(5): So
110(6): 1760 Hz 110(6): La
111(7): 3520 Hz 111(7): Ti

67

CipherLab C Programming Part |

2.6 LED INDICATOR

In general, the dual-color LED indicators on the mobile computer are used to indicate the
system status, such as good read or bad read, error occurrence, etc.

set_led
Purpose To set the LED operation mode.
Syntax void set_led (S32 led, S32 mode, S32 duration);
Parameters S32 led
(0] LED_RED Red LED light in use.
1 LED_GREEN | Green LED light in use.
2 LED_BLUE Blue LED light in use for the 2"d LED, which is used for
wireless communications by default.
3 LED_GREEN2 | Green LED light in use for the 2" LED, which is used
for wireless communications by default.
S32 mode
(0] LED_OFF Off for (duration * 0.01) seconds and then on
1 LED_ON On for (duration * 0.01) seconds and then off
2 LED_FLASH Flash, turn on and then off for (duration *0.01)
seconds. Then repeat.
OxfO LED_SYSTEM | Default setting for the 2" LED.

_CTRL > For LED_BLUE, it is set to indicate Bluetooth
status: flashing quickly for “waiting for connection”
or “connecting”; flashing slowly for “connected”.

> For LED_GREEN?2, it is set to indicate Wi-Fi status:
flashing quickly for “waiting for connection” or
“connecting”; flashing slowly for “connected”.
Oxfl LED_USER_ Used for the 2" LED if user control is desired. See

CTRL example below.

S32 duration

Specify duration in units of 10 milli-seconds.

» This parameter is ignored when the 2" parameter is LED_SYSTEM_CTRL
or LED_USER_CTRL.
Example set_led(LED_RED, LED_FLASH, 50);
// set red LED to flash for each 1 second cycle

set_led(LED_BLUE, LED _USER_CTRL, 0);

set_led(LED_BLUE, LED_FLASH, 20); // set blue LED for user control
Return Value None

68

Chapter 2 Mobile-Specific Function Library

2.7 VIBRATOR

This section describes the routines for configuring the vibrator.

» Vibrator: It can be used for status indication.

2.7.1VIBRATOR

GetVibrator

Purpose To get the status of the vibrator.
Syntax S32 GetVibrator (void);
Example val = GetVibrator(Q);

Return Value If enabled (On), it returns 1.

Otherwise, it returns O.

SetVibrator

Purpose To set the vibrator.
Syntax void SetVibrator (S8 mode);
Parameters S8 mode
(0] Turn off the vibrator
1 Turn on the vibrator
Example SetVibrator(1); // turn on the vibrator
Return Value None
Remarks Once the vibrator is enabled by SetVibrator(1), it will automatically start

vibrating until the vibrator is turned off by SetVibrator(0).

69

CipherLab C Programming Part |

2.8 REAL-TIME CLOCK

This section describes the calendar and timer manipulation routines.

2.8.1 CALENDAR

The system date and time are maintained by the calendar chip, and they can be retrieved
from or set to the calendar chip by the get _time() and set_time() functions. A backup
rechargeable Lithium battery keeps the calendar chip running even when the power is
turned off.

» The calendar chip automatically handles the leap year. The year field set to the
calendar chip must be in the format of four-digit.

Note: The system time variables sys _msec and sys_sec are maintained by CPU timers
and have nothing to do with this calendar chip. Accuracy of these two time
variables, depending on the CPU clock, is not suitable for precise time

manipulation. They are reset to O upon powering up.

DayOfWeek

Purpose To get the day of the week information.
Syntax S32 DayOfWeek (void);

Example day = DayOfWeek();

Return Value

The return value can be 1 — 7.

Remarks This routine returns the day of the week information based on the current date.
Return Value
1—-6 Monday to Saturday
7 Sunday
get_time
Purpose To get the current date and time from the calendar chip.
Syntax void get_time (S8 *cur_time);
Parameters S8 *cur_time
Pointer to a buffer where the system date and time is stored.
» The character array cur_time allocated must have a minimum of 15 bytes
to accommodate the date, time, and the string terminator.
» The format of the system date and time is “YYYYMMDDhhmmss”.
Example get_time(system_time);

Return Value

70

None

Chapter 2 Mobile-Specific Function Library

set_time
Purpose To set new date and time to the calendar chip.
Syntax S32 set_time (S8 *new_time);
Parameters S8 *new_time
Pointer to a buffer where the new date and time is stored.
» The character array new_time allocated must have a minimum of 15
bytes to accommodate the date, time, and the string terminator.
> The format of the system date and time is “YYYYMMDDhhmmss”.
YYYY year 4 digits
MM month 2 digits, 01—-12
DD day 2 digits, 01— 31
hh hour 2 digits, 00 — 23
mm minute 2 digits, 00 — 59
ss second 2 digits, 00 — 59
Example set_time(*“20050805125800™") ; // AUGUST 5, 2005 12:58:00
Return Value If successful, it returns 1.
Otherwise, it returns 0 to indicate the format is wrong, or the calendar chip is
malfunctioning.
Remarks If the format is invalid (e.g. set hour to 25), the operation is simply denied and

the system time remains unchanged.

71

CipherLab C Programming Part |

2.8.2 ALARM
GetAlarm
Purpose To get the current alarm time.
Syntax void GetAlarm (S8 * time_buf);
Parameters S8 * time_buf
Pointer to a buffer where the alarm time is stored.
» The character array cur_time allocated must have a minimum of 15 bytes
to accommodate the date, time, and the string terminator.
» The format of the alarm date and time is “YYYYMMDDhhmmss”.
Example GetAlarm(alarm_time);
Return Value None
SetAlarm
Purpose To set the alarm time.
Syntax void SetAlarm (const S8 * time_but);
Parameters const S8 * time_but
Pointer to a buffer where the alarm time is stored.
) The character array new_time allocated must have a minimum of 15
bytes to accommodate the date, time, and the string terminator.
» The format of the alarm date and time is “YYYYMMDDhhmmss”.
YYYY year 4 digits
MM month 2 digits, 01— 12
DD day 2 digits, 01— 31
hh hour 2 digits, 00 — 23
mm minute 2 digits, 00 — 59
ss second 2 digits, 00 — 59
Example SetAlarm(*20050805125800") ; // AUGUST 5, 2005 12:58:00
Return Value None

Remarks

72

If the format is invalid (e.g. set hour to 25), the operation is simply denied and
the alarm time remains unchanged.

Chapter 2 Mobile-Specific Function Library

2.9 BATTERY & CHARGING

This section describes the power management functions that can be used to monitor the
voltage level of the main and backup batteries. The mobile computer is equipped with a
main battery for normal operation as well as a backup battery for keeping SRAM data
and time accuracy.

2.9.1 BATTERY VOLTAGE

get_vmain

Purpose To get the voltage level of the main battery, in units of mV.

Syntax U32 get_vmain (void);

Example if (get_vmain() < 2200) // alkaline battery

Return Value

puts(“Battery is low.”);

It returns the voltage reading (milli-volt).

get_vbackup

Purpose
Syntax
Example

Return Value

To get the voltage level of the backup battery, in units of mV.
U32 get_vbackup (void);
batl = get_vbackup();

It returns the voltage reading (milli-volt).

73

CipherLab C Programming Part |

2.9.2 CHARGING STATUS

charger_status

Purpose
Syntax

Example

To check the charging progress of the main battery.
U32 charger_status (void);

if (charger_status == CHARGE_DONE)
puts(“Battery is full.”);

Return Value 0O | CHARGE_STANDBY Not connected to any external power.
1 | CHARGING_5V The battery is being charged via 5V power cord.
2 | CHARGE_DONE The battery is fully charged.
3 | CHARGE_FAIL Battery charging fails.
17 CHARGING_USB The battery is being charged via USB.
See Also GetUSBChargeCurrent, SetUSBChargeCurrent
GetUSBChargeCurrent
Purpose To get the charging current via USB port on the mobile computer.
Syntax U32 GetUSBChargeCurrent (void) ;
Example val = GetUSBChargeCurrent(); // get charging setting

Return Value

The return value can be either O, 1, or 2.

SetUSBChargeCurrent
Purpose To set the charging current via USB port on the mobile computer.
Syntax void SetUSBChargeCurrent (U32 current_type) ;
Parameters U32 current_type
(0] CURRENT_500mA Set charging at 500 mA.
1 CURRENT_100mA Set charging at 100 mA
2 CURRENT_OmA Disable charging
Example SetUSBChargeCurrent(CURRENT_500mA); // set 500 mA for USB charging

Return Value

74

None

Chapter 2 Mobile-Specific Function Library

2.10 KEYPAD

The background routine constantly scans the keypad to check if any key is being pressed.
There is a keyboard buffer the size of 32 bytes; if the buffer is full, the keystrokes
followed will be ignored. Normally, a C program needs constantly to check if any
keystroke is available in the buffer.

2.10.1 GENERAL

CheckKey

Purpose To detect whether the specified keys have been pressed simultaneously or not.

Syntax S32 CheckKey (const S32 scan_code,...);

Parameters Specify the scan codes of the keys as many as you like, but be sure to specify
the type as the last parameter. There are two types:

S32 LastlsType
-1 CHK_EXC Exclusive checking — only the keys being pressed match the
keys specified, will the function return 1.
-2 | CHK_INC Inclusive checking — as long as the keys being pressed
include the keys specified, this function will return 1.
Example while (1)
{
if (CheckKey(SC_1, SC_2, SC_3, CHK_EXC))
printf(“The user presses 1, 2, 3 simultaneously.”);
OSTimeDly(8); // delay 8x5 = 40 ms
}
Return Value If successful, it returns 1.
Otherwise, it returns O.

Remarks This routine scans the keypad to check if the specified keys are being pressed

or not. Usually, this is used to detect special key combinations for a special
purpose.
Note that it may need up to 40 milli-seconds for the system to scan the whole
keypad; therefore, two consecutive calls should not be made during the same
period. If you are not sure how long it may take to run your code between two
calls, you may call the OSTimeDly routine to ensure the delay is enough.

See Also OSTimeDly

75

CipherLab C Programming Part |

clr_kb
Purpose To clear the keyboard buffer.
Syntax void clr_kb (void);
Example clr_kbQ);
Return Value None
Remarks This routine is automatically called by the system upon powering up the mobile
computer.
See Also getchar, kbhit
getchar
Purpose To read one character from the keyboard buffer and then remove it.
Syntax S32 getchar (void);
Example c = getcharQ);
if (c > 0)
printf(“Key %d pressed.”, c);
else
printf(“No key pressed.”);
Return Value If successful, it returns the character read from the keyboard buffer.
Otherwise, it returns O to indicate the keyboard buffer is already empty.
Remarks This routine can be used with menu operation to detect a shortcut key being
pressed, or with touch screen operation to detect a touched item.
See Also clr_kb, kbhit, putch

76

Chapter 2 Mobile-Specific Function Library

GetKBDModifierStatus

Purpose To get information of the modifier keys (SHIFT/ALT/FN) as well as keypad
control settings.
Syntax U32 GetKBDModifierStatus (void);
Example state = GetkKBDModifierStatus();
Return Value An unsigned integer is returned, summing up values of each item.
Remarks Each bit indicates a certain item, and its value can be O or 1.
Bit | Item Remarks
0 Power key 0: Disable, 1: Enable
1 FN modification (= function mode) 0: Disable, 1: Enable
2 FN toggle 0: Auto Resume mode,
1: Toggle mode

Reserved
Reserved
FN as normal key 0: Disable, 1: Enable

3
4
5
6 Reserved
7
8
9

Reserved

Reserved

Reserved
10 Multi-Key mode 0: Disable, 1: Enable
11 Backlight key as normal key 0: Disable, 1: Enable

12 Reserved

It returns Ox01 to indicate that the following item is enabled by default:

> Bit 0 — Power key enabled

See Also GetFuncExtKey, GetFuncToggle, set_shift_lock, SetFuncExtKey, SetFuncToggle,
SetPwrKey

GetKeyClick

Purpose To get the current setting of key click.

Syntax S32 GetKeyClick (void);

Example state = GetKeyClick();

Return Value If key click is enabled, it returns 1~5 to indicate different tones.

Otherwise, it returns O.

Remarks The key click is set to be enabled by default, but it can be changed from
System Menu or through programming.

See Also SetKeyClick

77

CipherLab C Programming Part |

kbhit

Purpose To check whether there is any key being pressed or not.

Syntax S32 kbhit (void);

Example for ('kbhit():;); // wait till a key is pressed

Return Value

If any key is pressed, it returns 1 to indicate a character is put in the keyboard
buffer.

Otherwise, it returns O to indicate the buffer is empty.

See Also clr_kb, getchar
putch
Purpose To put one character to the keyboard buffer.
Syntax void putch (U8 c);
Parameters u8c
A character to be put into the keyboard buffer.
Example putch(KEY_ESC); // put ESC key value to keyboard buffer

Return Value

If successful, it returns the character read from the keyboard buffer.

Otherwise, it returns a null character (0x00) to indicate the buffer is empty.

Remarks This routine provides the capability to simulate the keypad operation.
For example, it can be implemented with touch screen operation. The key value
of a touched item, which is designed as a key on the screen, can be put to the
keyboard buffer by putch. It can then be detected by using getchar().

See Also clr_kb, getchar

SetKeyClick

Purpose To set the key click.

Syntax void SetKeyClick (S32 status);

Parameters S32 status
(0] Disable the key click.
1~5 Enable the key click; each stands for a specific tone.

Example SetKeyClick(1); // enable key click sound

Return Value

Remarks

See Also

78

None

The key click is set to be enabled by default, but it can be changed from
System Menu or through programming. Moreover, the frequency and duration
pair of the key click is held in the system global variable KEY_CLICK, which can
be used to generate the key click sound. For example,

on_beeper(KEY_CLICK);
GetKeyClick, KEY_CLICK

Chapter 2 Mobile-Specific Function Library

TriggerStatus

Purpose
Syntax

Example

Return Value

To check whether the SCAN key has been pressed or not.
S32 TriggerStatus (void);

if (TriggerStatus())

printf(*“Scan key is pressed.”);

If the SCAN key is pressed, it returns 1.

Otherwise, it returns 0.

SetTrigger
Purpose To set the SCAN key.
Syntax Void SetTrigger (S32 state);
Parameters S32 status
(0] Set the Scan key released.
1 Set the Scan key pressed.
Example SetTrigger(1); //set the scan key pressed
Return Value None

Remarks

This function is used as software trigger.

SetTrig2Key

Purpose

Syntax

Parameters

Example

Return Value

Remarks

To set the trigger key to act as a specific key function. While using the reader,
this function doesn’t work.

Void SetTrig2key (U32 trig, U32 key);

U32 trig

O (TRIG_MIDDLE) Specify the middle trigger key to be defined.
1 (TRIG_PISTOL) Specify the pistol trigger key to be defined.
2 (TRIG_LEFT) Specify the left trigger key to be defined.
3 (TRIG_RIGHT)

U32 key

Specify the right trigger key to be defined.

‘KEY_xxx’, the function key assigned to the trigger, can be found in 8600lib.h.
SetTrig2Key(TRIG_MIDDLE, KEY_F10);
//set the middle trigger to act as the F10 key

None

This function is used to assign a specific key function to the trigger key.

79

CipherLab C Programming Part |

ConfigureTriggerKey

Purpose To assign the 4 trigger keys of 8600 to specific functions in various
scenarios.
Syntax U32 ConfigureTriggerKey (U32 scenario, trigger_key t *keylist);
Parameters U32 scenario
0 Trigger key behavior while all readers
(TRIG_SET_READER_OFF) | are off.
1 Trigger key behavior only when the
(TRIG_SET_BARCODE_REA | barcode reader is on.
DER_ON)
2 Trigger key behavior only when the
(TRIG_SET_RFID_READER RFID reader is on.
_ON)
3 Trigger key behavior only when both
(TRIG_SET_MULTI_READE | barcode and RFID readers are on
R_ON) simultaneously.

trigger_key_t *keylist

A pointer that points to a variable of type trigger_key_t.
typedef struct {

S32 Main; // Main trigger

S32 Pistol; // Pistol

S32 Left; // Left side key

S32 Right; // Right side key

} trigger_key t;

80

Chapter 2 Mobile-Specific Function Library

Any characters and values listed in the table below can be set into trigger
keys.

TRIGGER_BCR 0x0801 KEY_F1 0x80
TRIGGER_RFID 0x0802 KEY_F2 0x81
KEY_MTRIG Oxaf KEY_F3 0x82
KEY_PTRIG Oxae KEY_F4 0x83
KEY_LTRIG Oxaa KEY_F5 0x84
KEY_RTRIG Oxa9 KEY_F6 0x85
KEY_ESC Ox1b KEY_F7 0x86
KEY_BS 0x08 KEY_F8 0x87
KEY_CLEAR 0x01 KEY_F9 0x88
KEY_ALPHA 0x02 KEY_F10 0x89
KEY_PWR 0x03 KEY_F11 Ox8a
KEY_CR 0x0d KEY_F12 0x8b
KEY_FN 0xfo KEY_F13 0x90
KEY_TAB 0xa0 KEY_F14 0x91
KEY_DEL Oxa2 KEY_F15 0x92
KEY_PLUS 0x2b KEY_F16 0x93
KEY_MINUS ox2d KEY_F17 0x94
KEY_DOT Ox2e KEY_F18 0x95
KEY_STAR Ox2a KEY_F19 0Xx96
KEY_DIV ox2f KEY_F20 0x97
KEY_NUM 0x23

KEY_SP 0x20

KEY_INS Oxal

KEY_UP 0x8c

KEY_DOWN 0x8d

KEY_LEFT Ox8e

KEY_RIGHT Ox8f

81

CipherLab C Programming Part |

Example

Return Value

Remarks

82

static const trigger_key t trig_set[4]=

{

/* main pistol left right */

{KEY_MTRIG, KEY_PTRIG, KEY_LTRIG, KEY_RTRIG},/*2 readers are off*/
{KEY_CR, TRIGGER_BCR, KEY_DOWN, KEY_UP},/*only barcode reader ison*/
{TRIGGER_RFID, KEY_CR, KEY_DOWN, KEY_UP},/*only RFID reader is on*/
{KEY_CR, TRIGGER_BCR, TRIGGER_RFID, TRIGGER_RFID}/*readers are on*/

}:

RFIDParameter rfid_param;
rfid_param.scanMode = RFID_SINGLE_MODE;
rfid_param.scanTimeout = 5; /* 5 seconds */
ConfigureTriggerKey(TRIG_SET_READER_OFF, &trig_set[0]);
ConfigureTriggerKey(TRIG_SET_BARCODE_READER_ON, &trig_set[1]):
ConfigureTriggerKey(TRIG_SET_RFID_READER_ON, &trig_set[2]);
ConfigureTriggerKey(TRIG_SET_MULTI_READER_ON, &trig_set[3]);
If successful, it returns 1.

Otherwise, it returns O.

1. Default values of trigger key are listed below:

Scenario O 1
Trigger TRIG_SET_READER_OFF TRIG_SET_BARCODE_READE
R _ON
Key -
Main KEY_CR TRIGGER_BCR
Pistol KEY_PTRIG TRIGGER_BCR
Left KEY_LTRIG TRIGGER_BCR
Right KEY_RTRIG TRIGGER_BCR
Scenario 2 3
Trigger TRIG_SET_RFID_READER TRIG_SET _MULTI_READER_O
ON N
Key -
Main TRIGGER_RFID TRIGGER_BCR
Pistol TRIGGER_RFID TRIGGER_BCR
Left TRIGGER_RFID TRIGGER_RFID
Right TRIGGER_RFID TRIGGER_RFID

2. Key set in scenario O is the same as the result of function SetTrig2Key().

3. The trigger key can be assigned a character or one-byte key value, which
can be got by the getchar() function when the key is pressed

Chapter 2 Mobile-Specific Function Library

See Also SetTrig2Key

OSKToggle

Purpose To toggle the display of on-screen keypad on an iOS-based device.

Syntax Void OSKToggle (void);

Example 0SKToggle(void);

Return Value None

Remarks After connection of Bluetooth HID is established, this function is used to toggle

the display of on-screen keypad on an iOS-based device.

83

CipherLab C Programming Part |

2.10.2 ALPHA KEY
dis_alpha
Purpose To disable the ALPHA key.
Syntax void dis_alpha (void);
Example dis_alphaQ);
Return Value None
Remarks This routine disables the ALPHA key and sets the input mode to numeric only.
> The same result can be obtained from LockAlphaState(0).
en_alpha
Purpose To enable or unlock the ALPHA key.
39-key: it can be set to ALPHA_FIXED only.
Syntax void en_alpha (S32 type) ;
Parameters S32 type
1 ALPHA_FIXED It shows only one character when pressing
one key. The character displayed depends on
the current input mode.
2 ALPHA_ROLLING For 29-key
It takes turns to show alphabets and number
when pressing the same key; the time interval
between each press must not exceed one
second. For example, the “2ABC” key can
generate “A”, “B”, “C” or “2” by turns within
one second.
For 39-key:
It takes turns to show alphabets and number
when pressing the same key; the time interval
between each press must not exceed one
second. For example, the “2B” key can
generate “B” and “2” by turns.
Example en_alphaQ);
Return Value None
Remarks By default, the input mode is numeric and can be modified by the ALPHA key.

> If the ALPHA key is disabled by dis_alpha(), this routine is used to enable

it.

> If the ALPHA key is locked by LockAlphaState(), this routine is used to

unlock it.

84

Chapter 2 Mobile-Specific Function Library

get_alpha_enable_state

Purpose To get the state of the ALPHA key.

Syntax S32 get_alpha_enable_state (void);
Example state = get_alpha_enable_state();
Return Value The return value can be one of the following:

Return Value
-1 No ALPHA key available

(0] The ALPHA key is disabled, resulting from dis_alpha() and
LockAlphaState().

1 The ALPHA key is enabled and the keypad behavior is set to
ALPHA_FIXED, resulting from en_alpha().

2 The ALPHA key is enabled and the keypad behavior is set to
ALPHA_ROLLING, resulting from en_alpha().

Remarks By default, the ALPHA key is enabled.

get_alpha_lock_state

Purpose To get information of the ALPHA state for input mode, locked or unlocked.
Syntax S32 get_alpha_lock_state (void);

Example state = get_alpha_lock_state();

Return Value The return value can be one of the following:

Return Value

-1 No ALPHA key available
(0] Numeric mode
1 Upper case alpha mode
2 Lower case alpha mode
3 Function mode
Remarks This routine gets the current state of input mode, resulting from either

LockAlphaState() or set_alpha_lock().

85

CipherLab C Programming Part |

LockAlphaState

Purpose
Syntax

Parameters

Example
Return Value

Remarks

To set the ALPHA state for input mode and lock (= disable) the ALPHA key.
void LockAlphaState (S32 state);
S32 state

O NUMERIC_KAYPAD

1 UPPER_CASE

2 LOWER_CASE
LockAlphaState(2);

Locked to numeric mode

Locked to upper case alpha mode

Locked to lower case alpha mode
// lower case alpha mode, ALPHA key disabled
None

This routine specifies the input mode, which cannot be modified by the ALPHA
key.

set_alpha_lock

Purpose
Syntax

Parameters

Example
Return Value

Remarks

86

To set the ALPHA state for input mode, unlocked.
void set_alpha_lock (S32 state);

S32 state

(0] Enable numeric mode

1 Enable upper case alpha mode
2 Enable lower case alpha mode

set_alpha_lock(1l); // upper case alpha mode, ALPHA key enabled
None
This routine sets the input mode, which can be modified by the ALPHA key.

> If the ALPHA key is disabled by dis_alpha() or locked by LockAlphaState(),
use en_alpha() to enable (= unlock) it.

Chapter 2 Mobile-Specific Function Library

2.10.3 FN KEY

The function key (orange color) serves as a modifier key used to produce a key

combination.

I) To enable this modifier key, press the function key on the keypad, and the status icon
E] will be displayed on the screen.

2) Press another key to get the value of the key combination (say, F1), and the status

icon will go off immediately when the function key is set to Auto Resume mode by
SetFuncToggle(). That is, this modifier key can work one time only.

3) To get the value of another key combination, repeat the above steps.

However, on condition that the function key is set to Toggle mode by SetFuncToggle(),
this modifier key can work as many times as desired until it is pressed again to exit the
function mode.

GetFuncToggle

Purpose To get information of the FN toggle state.
Syntax U32 GetFuncToggle (void);

Example state = GetFuncToggle();

Return Value The return value can be O — 4, and 6.

87

CipherLab C Programming Part |

SetFuncToggle

Purpose
Syntax

Parameters

Example

Return Value

To set the state of the FN (function) toggle.

void SetFuncToggle (U32 state);
24-key and 39-key:

U32 state

v A W N L O

4

Auto Resume mode + Multi-Key mode (default)
Toggle mode + Multi-Key mode

Auto Resume mode + Multi-Key mode + FN as normal key
Toggle mode + Multi-Key mode + FN as normal key

Multi-Key mode

Multi-Key mode + FN as normal key

Auto Resume mode — The function mode is toggled on by pressing the
function key; it is toggled off by pressing the second key of the key
combination. A status icon is displayed on the screen to indicate the status.
However, it allows re-pressing the function key to exit the function mode.

Toggle mode — The function mode is toggled on by pressing the function
key; it can only be toggled off by pressing the function key again. A status
icon is displayed on the screen to indicate the status.

Multi-Key mode — For any key combination, it requires pressing two keys
at the same time, or holding down the function key followed by the second
key.

FN as normal key — The function key is treated as a normal key.

SetFuncToggle(0) // set the FN state to Auto Resume and Multi-Key mode

None

EXTENDED FUNCTION KEYS

By default, F1—~F8 are available for 29-key model. However, you may use key
combinations for F9—~F20 after SetFuncExtKey(1) is called.

GetFuncExtKey

Purpose To check whether the extended function keys F9~F20 are enabled.
Syntax U32 GetFuncExtKey (void);

Example state = GetFuncExtKey;

Return Value

88

If enabled, it returns 1.

Otherwise, it returns O.

Chapter 2 Mobile-Specific Function Library

SetFuncExtKey
Purpose To set the state of extended function keys F9~F20.
Syntax void SetFuncExtKey (U32 state) ;
Parameters U32 state
(0] Disable F9~F20
1 Enable F9~F20
Example SetFuncExtKey(1); // enable key combinations F9~F20
Return Value None
Remarks Depending on the state of the FN (function) toggle, the following key
combinations are used for F9~F20.
Orange key (FN) + Number/Symbol key Result
FN + [-] F9
FN + [.] F10
FN + [1] F11
FN + [2] F12
FN + [3] F13
FN + [4] F14
FN + [5] F15
FN + [6] F16
FN + [7] F17
FN + [8] F18
FN + [9] F19
FN + [0] F20
See Also SetFuncToggle

89

CipherLab C Programming Part |

2.11LCD

The liquid crystal display (LCD) on the mobile computer is a TFT graphic display module.
A coordinate system is used for the cursor movement routines to determine the cursor
location — (X, y) indicating the column and row position of cursor. The coordinates given
to the top left point is (0, 0), while the bottom right point is (239, 319). For displaying a
graphic, the coordinate system is on dot (pixel) basis.

Series Screen Size Top_Left (x, y) Bottom_Right (x, y)
8600 240 x 320 dots (0, 0) (239, 319)
2.11.1 PROPERTIES

GetVideoMode

Purpose To get the display mode of the LCD.
Syntax U32 GetVideoMode (void);
Example if (GetVideoMode() == VIDEO_NORMAL)

puts(“Normal Mode™);

Return Value Return Value
O VIDEO_NORMAL Normal mode in use
1 | VIDEO_REVERSE Reverse mode in use

Remarks This routine indicates the current display mode of the LCD.

SetVideoMode

Purpose To set the display mode of the LCD.
Syntax void SetVideoMode (U32 mode);
Parameters U32 mode
(0] VIDEO_NORMAL Normal mode in use
1 VIDEO_REVERSE Reverse mode in use
Example SetVideoMode(VIDEO_REVERSE); // set reverse video mode
Return Value None
Remarks This routine determines the display mode of the LCD.

90

Chapter 2 Mobile-Specific Function Library

GetBacklitLevel

Purpose
Syntax

Parameters

Example

Return Value

See Also

Get LCD backlight level.
U32 GetBacklitLevel (U32 Device, U32 Profile);

U32 Device

0 BKLIT_DEV_LCD

1 BKLIT_DEV_KEY

U32 Profile

O BKLIT_PROFILE_BATTERY
1 BKLIT_PROFILE_EXPOWER

U32 level= GetBacklitLevel (BKLIT DEV_LCD, BKLIT_PROFILE_BATTERY):

(0] Backlight off

Ox01 Level 1 Min light
0x02 Level 2

0x03 Level 3 Default light
0ox04 Level 4

0Ox05 Level 5 Max light

SetBacklitLevel

SetBacklitLevel

Purpose
Syntax

Prameters

Example

Return Value

Set LCD backlight level.
U32 SetBacklitLevel(U32 Device, U32 Profile, U32 Level);

U32 Level

(0] Backlight off

Ox01 Level 1 Min light
0x02 Level 2

0x03 Level 3 Default light
0ox04 Level 4

0Ox05 Level 5 Max light

success = SetBacklitLevel (BKLIT_DEV_KEY, BKLIT_PROFILE_EXPOWER, 5);

If success, it returns 1.

Otherwise, it returns 0.

91

CipherLab C Programming Part |

GetBacklitTimeout

Purpose Get LCD backlight time interval.
Syntax U32 GetBacklitTimeout(U32 Device, U32 Profile);
Parameters U32 Device
0 BKLIT_DEV_LCD
1 BKLIT_DEV_KEY
U32 Profile
O BKLIT_PROFILE_BATTERY
1 BKLIT_PROFILE_EXPOWER
Example U32 timeout= GetBacklitTimeout(BKLIT_DEV_LCD, BKLIT_PROFILE_BATTERY);
Return Value Return timeout interval in seconds.

SetBacklitTimeout

Purpose Set LCD backlight time interval.
Syntax U32 SetBacklitTimeout(U32 Device, U32 Profile, U32 TimeSec);
Prameters U32 Timeout

(0] Backlight always on

10 — 1800 |In seconds, time interval for backlight on
Example success = SetBacklitTimeout(BKLIT_DEV_KEY, BKLIT_PROFILE_EXPOWER, 0);
Return Value If success, it returns 1.

Otherwise, it returns O.

BacklitOn
Purpose Turn on/off LCD backlight immediately.
Syntax void BacklitOn(U32 Device, U32 OnOff);
Parameters U32 Device

o] BKLIT_DEV_LCD

1 BKLIT_DEV_KEY

U32 OnOff

(0] BKLIT_OFF

1 BKLIT_ON
Example BacklitOn(BKLIT_DEV_LCD, BKLIT_OFF); //to turn off LCD backlight
Return Value None

92

Chapter 2 Mobile-Specific Function Library

2.11.2 CURSOR

GetCursor

Purpose To check whether the cursor indication on the LCD is visible (On) or not (Off).
Syntax U32 GetCursor (void);

Example if (GetCursor() == 0)

Return Value

puts(“Cursor Off”);
If visible, it returns 1.

Otherwise, it returns 0.

SetCursor
Purpose To determine whether the cursor indication on the LCD is visible (On) or not
(Off).
Syntax void SetCursor (U32 cursor);
Parameters U32 cursor
(0] CURSOR_OFF Hide cursor (Off)
1 CURSOR_ON Display cursor (On)
Example SetCursor(0); // turn off the cursor indication
Return Value None
gotoxy
Purpose To move the cursor to a new position.
Syntax void gotoxy (U32 x_position, U32 y_position);
Parameters U32 x_position
X coordinate of the new cursor position desired.
U32 y_position
Y coordinate of the new cursor position desired.
Example gotoxy(10, 0)

Return Value

Remarks

See Also

// move the cursor to the 11%" column of the first line
None

This routine moves the cursor to a new position whose (X, Y) coordinates are
specified in the argument x_position and y_position.

Depending on the following elements, the maximum values for coordinates are
limited:

» The size of LCD.
» The font file in use.

wherexy

93

CipherLab C Programming Part |

wherex

Purpose To get the X coordinate of the current cursor (column position).
Syntax U32 wherex (void);

Example x_position = wherex();

Return Value

It returns the X coordinate.

wherexy
Purpose To get the (X, Y) coordinates of the current cursor.
Syntax void wherexy (U32 *column, U32 *row);
Parameters U32 *column
Pointer to a buffer where the X coordinate is stored.
U32 *row
Pointer to a buffer where the Y coordinate is stored.
Example wherexy(&x_position, &y position);

Return Value

None

Remarks This routine copies the values of column and row for the current cursor position
to the variables whose addresses are specified in the arguments column and
row.

See Also gotoxy, wherex, wherey

wherey

Purpose To get the Y coordinate of the current cursor (row position).

Syntax U32 wherey (void);

Example y_position = wherey();

Return Value

94

It returns the Y coordinate.

Chapter 2 Mobile-Specific Function Library

2.11.3 DISPLAY
fill_rect
Purpose To fill a rectangular area on the LCD.
Syntax void fill_rect (S32 left, S32 top, S32 width, S32 height);
Parameters S32 left, top
(X, Y) coordinates of the upper left corner of the rectangle.
S32 width
Width of the rectangle to be filled, in dots.
S32 height
Height of the rectangle to be filled, in dots.
Example fill_rect(12, 8, 40, 8);

Return Value

Remarks

See Also

None

This routine fills a rectangular area on the LCD whose top left position and size
are specified by left, top, width, and height.

» The cursor position is not affected after the operation.

clr_rect

95

CipherLab C Programming Part |

printf
Purpose To display character strings and values of C variables in a specified format to
the LCD.
Syntax S32 printf (S8 *format, var...);
Parameters S8 *format
Character string that describes the format to be used.
Var...
Any variable whose value is being printed on the LCD.
Example pritnf(*“ID:%s”, i1d_buffer);

Return Value

Remarks

96

It returns the character count sent to the LCD.

This routine accepts any variable and prints its value to the LCD. The value of
each variable is formatted according to the codes embedded in the format
specification format.

To print values of C variables, a format specification must be embedded in
format for each variable to be printed. The format specification for each
variable has the following form:

%[Flags][width].[precision][size][type]

Field

%
(required)

Flags
(optional)

Width
(optional)

Precision
(optional)

Size
(optional)

Explanation

Indicates the beginning of a format specification. Use %% to print
a percentage sign.

One of more of the ‘-*, ‘+’, ‘# characters or a blank space
specifies justification, and the appearance of plus/minus signs in
the values printed.

Left justify output value. The default is right justification.

+ If the output value is a numerical one, print a ‘+’ or

‘-* character according to the sign of the value. A
‘-* character is always printed for a negative value no
matter this flag is specified or not.

Blank | Positive numerical values are prefixed with blank spaces.
This flag is ignored if the + flag also appears.

When used in printing variables of type o, X, or X (see
below), non-zero output values are prefixed with 0, 0x,
or OX respectively.

A number that indicates how many characters, at maximum,
must be used to print the value.

A number that indicates how many characters, at maximum, can
be used to print the value. When printing integer variables, this is
the minimum number of digits used.

A character that modifies the type field which comes next. One of
the characters ‘h’, ‘I', and ‘L’ can appear in this field to
differentiate between short and long integers. ‘h’ is for short
integers, and ‘I’ or ‘L’ for long integers.

Chapter 2 Mobile-Specific Function Library

Type A letter that indicates the type of variable being printed:
(required) .
Single character
d signed decimal integer

i signed decimal integer

o] Octal digits without sign
u unsigned decimal integer
X Hexadecimal digits using lower case letter

Hexadecimal digits using upper case letter

s A null terminated character string
putchar
Purpose To display a character on the LCD.
Syntax S32 putchar (S32 ¢);
Parameters S32¢c
The character being sent to the LCD.
Example putchar(*A%);

Return Value

It always returns 1.

Remarks This routine sends a character specified in the argument ¢ to the LCD at the
current cursor position. The cursor is moved accordingly.

puts

Purpose To display a string on the LCD.

Syntax S32 puts (S8 *string);

Parameters S8 *string
The string being sent to the LCD.

Example puts(“Password :);

Return Value

Remarks

It returns the character count of the string.

This routine sends a string, whose address is specified in the argument string,
to the LCD at the current cursor position. The cursor is moved accordingly as
each character of string is sent to the LCD. The operation continues until a
terminating null character is encountered.

97

CipherLab C Programming Part |

WaitHourglass

Purpose To show a moving hourglass on the LCD.
Syntax void WaitHourglass (S32 UppLeftX, S32 UppLeftY, S32 type);
Parameters S32 UppLeftX, UppLeftY

(X, Y) coordinates of the upper left corner of the hourglass.

S32 type

1 HOURGLASS_24x23 | 24X23 pixels

2 HOURGLASS 8x8 8x8 pixels
Example while (IsRunning)

{.--

WaitHourglass(68, 68, HOURGLASS 24x23);
// show the 24x23 hourglass during the loop

---}
Return Value None
Remarks This routine has to be called constantly to maintain its functionality.

» Five different patterns of an hourglass type take turns to show on the LCD
at certain intervals, indicating the passage of time.

» The time factor is decided through programming but no less than two
seconds.

See Also clr_rect

98

Chapter 2 Mobile-Specific Function Library

2.11.4 CLEAR

clr_eol

Purpose To clear from where the cursor is to the end of the line, and then move the
cursor to its original position.

Syntax void clr_eol (void);

Example clr_eolQ;

Return Value None

See Also clr_scr

clr_icon

Purpose To clear the icon zone on the LCD.

Syntax void clr_icon (void);

Example clr_iconQ);

Return Value

None

Remarks The icon zone is an unprintable area reserved for showing some status icons,
such as the battery icon, antenna, system time, etc.
» Programmers can show custom icons in this area by using the show_image
function.
» When calling clr_scr() to clear the screen, this icon zone won’t be cleared.
Therefore, if you need to erase the icon zone, you have to call clr_icon().
See Also clr_scr
clr_rect
Purpose To clear a rectangular area on the LCD.
Syntax void clr_rect (S32 left, S32 top, S32 width, S32 height);
Parameters S32 left, top
(X, Y) coordinates of the upper left corner of the rectangle.
S32 width
Width of the rectangle to be cleared, in dots.
S32 height
Height of the rectangle to be cleared, in dots.
Example clr_rect(12, 8, 40, 8);

Return Value

Remarks

See Also

None

This routine clears a rectangular area on the LCD whose top left position and
size are specified by left, top, width, and height.

» The cursor position is not affected after the operation.

fill_rect

99

CipherLab C Programming Part |

clr_scr

Purpose To clear everything on the LCD.

Syntax void clr_scr (void);

Example clr_scrQ;

Return Value None

Remarks This routine clears contents of the current screen and places the cursor at the
first column of the first line — (0, 0).

See Also clr_eol, clr_icon, clr_rect

100

Chapter 2 Mobile-Specific Function Library

2.11.5IMAGE

The show_image() function can be used to display images on the LCD. The user needs
to allocate an unsigned char array to store the bitmap data of the image. This array
begins with the top row of pixels. Each row begins with the left-most pixels. Each bit of
the bitmap represents a single pixel of the image. If the bit is set to 1, the pixel is
marked, and if it is O, the pixel is unmarked.

The 1° pixel in each row is represented by the least significant bit of the 1% byte in each
row. If the image is wider than 8 pixels, the 9" pixel in each row is represented by the
least significant bit of the 2" byte in each row.

The following is an example to show our company logo, and the static unsigned char
array is used for storing its bitmap data.

static unsigned char CipherLab_logo [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, Ox00, 0x00, 0x00, Ox00, Ox00, 0x00, Ox00, Ox00,
0x00, 0x00, 0x00, Oxf0, OxFfF, OxOf, Ox00, Ox00, Ox00, Ox00, Ox10, Ox00, Ox08, Ox00, Ox00,
0x00, 0x00, Oxfc, OxFf, OxOb, Ox00, Ox00, O0x00, O0x00, Oxfc, OxFf, OxOb, Ox00, Ox00, Ox00,
0x00, Oxfc, OxFf, OxOb, 0x80, 0x07, 0x00, Ox00, Oxf4, OxFF, OxOb, OxcO, Oxac, 0x93, Ox77,
0xf4, 0x1d, OxOb, 0x60, Oxa0, 0x94, 0x90, O0xf4, Oxda, Ox0Oa, 0x20, Oxa0, 0x94, 0x90, Oxf4,
Oxda, Ox0a, 0x20, Oxa0, Oxf3, 0x77, 0x74, 0x17, Ox0Ob, 0x60, Oxa8, 0x90, 0x30, 0x74, 0xdO,
0x0a, 0xcO, Oxac, 0x90, 0x50, Ox74, Oxd7, Ox0Oa, 0x80, Oxa7, 0x90, 0x97, 0x04, 0x17, OxOb,
0x00, 0x00, 0x00, 0x00, Oxfc, OxFF, OxOFf, Ox00, Ox00, Ox00, Ox00, OxFfc, OxFfF, Ox03, Ox00,
0x00, 0x00, 0x00, Oxfc, Oxff, O0x03, 0x00, Ox00, 0x00, 0x00, Ox00, Ox00, 0Ox00, 0x00, Ox00,
0x00, 0x00, 0x00, 0x00, 0Ox00};

101

CipherLab C Programming Part |

get_image

Purpose
Syntax

Parameters

Example
Return Value

Remarks

To read a bitmap pattern from a rectangular area on the LCD.
void get_image (S32 left, S32 top, S32 width, S32 height, void *bitmap);
S32 left, top

(X, Y) coordinates of the upper left corner of the rectangle.
S32 width

Width of the rectangle, in dots.

S32 height

Height of the rectangle, in dots.

void *bitmap

Pointer to a buffer where bitmap data will be copied to.
get_image(12, 32, 60, 16, buf);

None

This routine copies the bitmap pattern of a rectangular area (whose top left
position and size are specified by left, top, width, and height) on the LCD to a
buffer (bitmap).

» The cursor position is not affected after the operation.

show_image

Purpose

Syntax

Parameters

Example
Return Value

Remarks

102

To put a bitmap pattern to a rectangular area on the LCD.

void show_image (S32 left, S32 top, S32 width, S32 height, const void
*bitmap);

S32 left, top

(X, Y) coordinates of the upper left corner of the rectangle.

S32 width

Width of the rectangle, in dots.

S32 height

Height of the rectangle, in dots.

const void *bitmap

Pointer to a buffer where bitmap data is kept for displaying on the LCD.
show_image(35, 5, 52, 24, CipherLab_logo[]):

None

This routine displays the bitmap pattern from a buffer (pat) to a rectangular
area (whose top left position and size are specified by left, top, width, and
height) on the LCD.

» The cursor position is not affected after the operation.

2.11.6 GRAPHICS

Chapter 2 Mobile-Specific Function Library

Monochrome graphics have three factors listed in the table below.

Key Factors

Parameters

Video Mode

Pixel State

Shape State

VIDEO_REVERSE
VIDEO_NORMAL
DOT_MARK
DOT_CLEAR
DOT_REVERSE
SHAPE_FILL
SHAPE_NORMAL

lllustrative examples are given below.

Shape State

Pixel State

Functions
1 See SetVideoMode()
0
1 See circle(), line(), putpixel() and rectangle()
0
-1
1 See circle(), rectangle()
0

SHAPE_FILL

SHAPE_NORMAL

DOT_MARK

DOT_CLEAR DOT_REVERSE

1 N
[|~

103

CipherLab C Programming Part |

circle
Purpose To draw a circle on the LCD.
Syntax void circle (832 x, S32 vy, S32 r, S32 type, S32 mode) ;
Parameters S32 x,y
(X, Y) coordinates of the center of a circle.
S32r
Radius of a circle.
S32 type
(0] SHAPE_NORMAL Hollow object
1 SHAPE_FILL Solid object
S32 mode
-1 DOT_REVERSE Dot in Reverse mode
(0] DOT_CLEAR Dot being cleared
1 DOT_MARK Dot being marked
Example circle(80, 120, 8, SHAPE_FILL, DOT_MARK);

Return Value

// show a solid black circle centered at the position of (80,120) with
radius of 8 pixels

None

See Also line, rectangle
line
Purpose To draw a line on the LCD.
Syntax void line (S32 X1, S32 Y1, S32 X2, S32 Y2, S32 mode) ;
Parameters S32 X1, Y1

(X, Y) coordinates of the starting point of a line.

S32 X2, Y2

(X, Y) coordinates of the ending point of a line.

S32 mode

-1 DOT_REVERSE Dot in Reverse mode

(0] DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked
Example line(10, 10, 120, 10, DOT_MARK); // draw a horizontal line

Return Value

See Also

104

line(80, 120, 10, 10, DOT_MARK);

None

circle, rectangle

// draw an oblique line

Chapter 2 Mobile-Specific Function Library

putpixel
Purpose To mark a pixel (or draw a dot) on the LCD.
Syntax void putpixel (S32 pos_x, S32 pos_y, S32 mode) ;
Parameters S32 pos_xX, pos_y

(X, Y) coordinates of a pixel.

S32 mode

-1 DOT_REVERSE Dot in Reverse mode

(0] DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked
Example putpixel (80, 120, DOT_REVERSE);

// mark or clear the dot at (80,120) depending on the pixel status

Return Value None
rectangle
Purpose To draw a rectangle on the LCD.
Syntax void rectangle (S32 X1, S32 Y1, S32 X2, S32 Y2, S32 type, S32 mode) ;
Parameters S32 X1, Y1

(X, Y) coordinates of the starting point of a diagonal.

S32 X2, Y2

(X, Y) coordinates of the ending point of a diagonal.

S32 type

(0] SHAPE_NORMAL Hollow object

1 SHAPE_FILL Solid object

S32 mode

-1 DOT_REVERSE Dot in Reverse mode

(0] DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked
Example rectangle(10, 20, 80, 100, SHAPE_FILL, DOT_MARK);

// show a solid black rectangle

Return Value None
See Also circle, line

105

CipherLab C Programming Part |

2.11.7 COLOR DISPLAY

Besides monochrome graphics, 8600 also supports color display. Functions regarding
color display are introduced in this section.

The JPEG functions mentioned in this section are based in part on the JPEG library of the
Independent JPEG Group.

ShowBMP
Purpose To show a bitmap by opening a file.
Syntax S32 ShowBMP (S32 layer, S32 pos_x, S32 pos_y, const void *BMPFile,
Pixel *outbuf) ;
Parameters S32 layer
O LCD_DRAWING_LAYERO | LCD background
1 LCD_DRAWING_LAYER1 |LCD foreground
S32 pos_x, pos_y
(X, Y) coordinates of the upper left of a renctangle.
const void *BMPFile
full path of the bmp file. ex: "C:\\Cipherlab.bmp"
Pixel *outbuf
pointer to the buffer where the converted bitmap is stored. If NULL is
assigned, system will use the push_scr() buffer instead.
Example const U8 filename[]="C:\\Cipherlab.bmp";

Return Value

106

ret = ShowBMP(LCD_DRAWING_LAYER1, 0, O, Ffilename, NULL);

(0] success

-1 fails to open the file

-2 fails to get file information

-3 Not a BMP file

-4 unsupported BMP type

-5 incorrect picture size

-6 fails to extract bitmap from file

Chapter 2 Mobile-Specific Function Library

ShowJPG

Purpose To show a JPEG image by opening a file.

Syntax S32 ShowJPG (S32 layer, S32 pos_x, S32 pos_y, char scale_ratio, const
void *JPGFile) ;

Parameters S32 layer
(0] LCD_DRAWING_LAYERO | LCD background
1 LCD_DRAWING_LAYER1 | LCD foreground
S32 pos_x, pos_y
(X, Y) coordinates of the upper left of a renctangle.
char scale_ratio
Specify the ratio of displaying image to LCD screen.
(0] Auto-scaled (the image size will be equal or smaller than the screen)

1—-16 |Specify the number ranging from 1 to 16 to define the displaying
ratio of N (1—16) to 8. For example, the ratio of 16/8 means the
displaying image will be two times the size of the original image.

const void *JPGFile

full path of the jpeg file. ex: "C:\\Cipherlab.jpg"
Example const U8 filename[]="C:\\Cipherlab.jpg";
ret = ShowJPG(LCD_DRAWING_LAYER1, 0, 0, 9, Filename);

Return Value 0 success
-1 fails to open the file
-2 fails to get file information
-4 The original image to be displayed is beyond the LCD screen

-5 incorrect image size

107

CipherLab C Programming Part |

ShowJPGBySz

Purpose To show a JPEG image by opening a file within the specified area.

Syntax S32 ShowJPGBySz (S32 layer, S32 pos_x, S32 pos_y, S32 size_x, S32
size_y, const void *JPGFile) ;

Parameters S32 layer
(0] LCD_DRAWING_LAYERO | LCD background
1 LCD_DRAWING_LAYER1 | LCD foreground
S32 pos_x, pos_y
(X, Y) coordinates of the upper left of a renctangle.
S32 size_x, size_y

Specify an area using (X, Y) to indicate the horizontal and vertical length of a
renctangle.

const void *JPGFile

full path of the jpeg file. ex: "C:\\Cipherlab.jpg"
Example const U8 filename[]="C:\\Cipherlab.jpg";
ret = ShowJPGBySz(LCD_DRAWING_LAYER1, 0, 0, 160, 90, filename);

Return Value 0 success
-1 fails to open the file
-2 fails to get file information
-4 The original image to be displayed is beyond the LCD screen

-5 incorrect image size

108

Chapter 2 Mobile-Specific Function Library

SetColor
Purpose To set color of LCD background/foreground and primary/secondary layer.
Syntax void SetColor (S32 layer, S32 order, U32 color) ;
Parameters S32 layer
O LCD_DRAWING_LAYERO LCD background
1 LCD_DRAWING_LAYER1 LCD foreground
S32 order
(0] COLOR_ORDER_SECONDARY | Background color of the text
1 COLOR_ORDER_PRIMARY Color of the text
S32 color
COLOR_BLACK (U32) 0x00000000
COLOR_BLUE (U32) 0xO00000FF
COLOR_LIME (U32) 0xO000FFO0
COLOR_RED (U32) OxO0FFO000
COLOR_YELLOW (U32) OxOOFFFFOO
COLOR_CYAN (U32) 0xO000FFFF
COLOR_MAGENTA (U32) OxOOFFOOFF
COLOR_MAROON (U32) 0x00800000
COLOR_GREEN (U32) 0x00008000
COLOR_NAVY (U32) 0x00000080
COLOR_OLIVE (U32) 0x00808000
COLOR_TEAL (U32) 0x00008080
COLOR_PURPLE (U32) 0x00800080
COLOR_GRAY (U32) 0x00808080
COLOR_SILVER (U32) 0x00C0C0CO
COLOR_WHITE (U32) OXOOFFFFFF
COLOR_NONE (U32) 0x80000000
Example SetColor(LCD_DRAWING_LAYER1, COLOR_ORDER_PRIMARY, COLOR_RED);

Return Value

Remarks

SetColor(LCD_DRAWING_LAYER1, COLOR_ORDER_SENCONDARY, COLOR_GREEN);

gotoxy(0, 11);

// move to target line

printf(“Hello™); //string displayed in red with green background

None

Layer O is not using the order parameter.

109

CipherLab C Programming Part |

GetColor
Purpose To read the color information of current LCD background/foreground and
primary/secondary layer.
Syntax U32 GetColor (S32 layer, S32 order) ;
Parameters S32 layer
(0] LCD_DRAWING_LAYERO LCD background
1 LCD_DRAWING_LAYER1 LCD foreground
S32 order
(0] COLOR_ORDER_SECONDARY | Background color of the text
1 COLOR_ORDER_PRIMARY Color of the text
Example U32 foreColor;
foreColor = GetColor(LCD_DRAWING_LAYER1, COLOR_ORDER_PRIMARY);
Return Value None
ShowPic
Purpose To put a color bitmap on the screen.
Syntax void ShowPic (S32 layer, S32 pos_Xx, S32 pos_y, S32 size_x, S32 size_y,
const Pixel *ColorBitmap) ;
Parameters S32 layer

(0] LCD_DRAWING_LAYERO | LCD background

1 LCD_DRAWING_LAYER1 |LCD foreground

S32 pos_X, pos_y

(X, Y) coordinates of the upper left of a renctangle.
S32 size_x, size_y

(X, Y) pixels of the horizontal and vertical.

const Pixel *ColorBitmap

pointer to the buffer where the color bitmap is stored.

Example const Pixel testPic[]={0xf800,0xf800, 0Oxf800,0xF800, Ox01f,0x01f,
0x01f,0x01f};

ShowPic(LCD_DRAWING_LAYER1, 0, 200, 4, 2, testPic);

Return Value None
Remarks Each pixel is presented by 16 bits of memory divided into 3 groups:
MSB LSB

110

Chapter 2 Mobile-Specific Function Library

GetPic
Purpose To read a color bitmap on the screen.
Syntax void GetPic (S32 layer, S32 pos_x, S32 pos_y, S32 size_x, S32 size_y,
Pixel *ColorBitmap) ;
Parameters S32 layer
(0] LCD_DRAWING_LAYERO | LCD background
1 LCD_DRAWING_LAYER1 | LCD foreground
S32 pos_x, pos_y
(X, Y) coordinates of the upper left of a renctangle.
S32 size_x, size_y
(X, Y) pixels of the horizontal and vertical.
Pixel *ColorBitmap
pointer to the buffer where the color bitmap is stored.
Example Pixel pixBuffer[8];
GetPic(LCD_DRAWING_LAYER1, 0, 20, 4, 2, pixBuffer);
Return Value None

111

CipherLab C Programming Part |

2.12 FONTS

2.12.1 FONT SIZE

Basically, the mobile computer allows two font size options for the system font: 10x20
and 12x24. These options are also applicable to other alphanumerical font files (for single
byte languages), such as the multi-language font file and Hebrew/Nordic/Polish/Russian
font files.

» The LCD will show 10x20 alphanumeric characters by default.

In addition to the system font, the mobile computer supports a number of font files as
shown below. Available font size options depend on which font file is downloaded to the
mobile computer.

Font Files SetFont Options

Single-byte System font (default) FONT_SYS_10X20, FONT_SYS_12X24

Multi-language font file FONT_EU_08X16, FONT_EU_10X20,
FONT_EU_12X24, FONT_EU_14X28

Double-byte Tc FONT_TC_08X16, FONT_TC_10X20,
FONT_TC_12X24, FONT_TC_14X28

Sc FONT_SC_08X16, FONT_SC_10X20,
FONT_SC_12X24, FONT_SC_14X28

Jp FONT_JP_08X16, FONT_JP_10X20,
FONT_JP_12X24, FONT_JP_14X28

Kr FONT_KR_08X16, FONT_KR_10X20,
FONT_KR_12X24, FONT_KR_14X28

2.12.2 DISPLAY CAPABILITY

Varying by the font size of alphanumeric characters, the display capability can be viewed
by lines and characters (per line) as follows.

Screen Size (dots) Alphanumerical Font Display Capability Icon Zone

8600 240 x 320 Font Size 08x16 dots 30 (char) * 18 (lines) | First column (240x20)
Font Size 10x20 dots |24 (char) * 15 (lines) First column (240x20)
Font Size 12x24 dots | 20 (char) * 12 (lines) First column (240x20)
Font Size 14x28 dots |17 (char) * 10 (lines) First column (240x20)

2.12.3 MULTHANGUAGE FONT

The multi-language font file includes English (default), French, Hebrew, Latin, Nordic,
Portuguese, Turkish, Russian, Polish, Slavic, Slovak, etc. To display in any of these
languages except English, you need to call SetLanguage() to specify the language by
region.

112

Chapter 2 Mobile-Specific Function Library

2.12.4 SPECIAL FONTS

Fonts with file name specifying Tc (Traditional Chinese), Sc (Simplified Chinese), Jp
(Japanese), Kr (Koean) are referred to as the special font files. This is because their font
size for alphanumeric characters must be determined by SetFont(). Otherwise, the
characters cannot be displayed properly.

CheckFont

Purpose To check which font file resides in the flash memory.
Syntax U32 CheckFont (void);

Example n = CheckFont();

Return Value

See Also

Return Value
FONT_SYS_08X16
FONT_SYS_10X20
FONT_SYS_12X24
FONT_SYS_14X28
FONT_TC_08X16
FONT_TC_10X20
FONT_TC_12X24
FONT_TC_14X28
FONT_SC_08X16
FONT_SC_10X20
FONT_SC_12X24
FONT_SC_14X28
FONT_JP_08X16
FONT_JP_10X20
FONT_JP_12X24
FONT_JP_14X28
FONT_KR_08X16
FONT_KR_10X20
FONT_KR_12X24
FONT_KR_14X28
FONT_EU_08X16
FONT_EU_10X20
FONT_EU_12X24
FONT_EU_14X28

08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character
08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character
08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character
08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character
08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character
08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character

FontVersion, SetLanguage

113

CipherLab C Programming Part |

GetFont

Purpose To get the current font size information.
Syntax U32 GetFont (void);

Example it (GetFont() == FONT_SYS_10X20)

Return Value

114

Return Value
FONT_SYS_08X16
FONT_SYS_10X20
FONT_SYS_12X24
FONT_SYS_14X28
FONT_TC_08X16
FONT_TC_10X20
FONT_TC_12X24
FONT_TC_14X28
FONT_SC_08X16
FONT_SC_10X20
FONT_SC_12X24
FONT_SC_14X28
FONT_JP_08X16
FONT_JP_10X20
FONT_JP_12X24
FONT_JP_14X28
FONT_KR_08X16
FONT_KR_10X20
FONT_KR_12X24
FONT_KR_14X28
FONT_EU_08X16
FONT_EU_10X20
FONT_EU_12X24
FONT_EU_14X28

puts(“Font : 10X207);

08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character
08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character
08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character
08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character
08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character
08x16 graphic dots per character
10x20 graphic dots per character
12x24 graphic dots per character
14x28 graphic dots per character

Chapter 2 Mobile-Specific Function Library

SetFont

Purpose To select a font size for the LCD to display alphanumeric characters properly.

Syntax void SetFont (U32 font);

Parameters uU32 font
FONT_SYS_08X16 08x16 graphic dots per character
FONT_SYS_10X20 10x20 graphic dots per character
FONT_SYS_12X24 12x24 graphic dots per character
FONT_SYS_ 14X28 14x28 graphic dots per character
FONT_TC_08X16 08x16 graphic dots per character
FONT_TC_10X20 | 10x20 graphic dots per character
FONT_TC_12X24 | 12x24 graphic dots per character
FONT_TC_14X28 | 14x28 graphic dots per character
FONT_SC_08X16 08x16 graphic dots per character
FONT_SC_10X20 | 10x20 graphic dots per character
FONT_SC_12X24 | 12x24 graphic dots per character
FONT_SC_14X28 | 14x28 graphic dots per character
FONT_JP_08X16 08x16 graphic dots per character
FONT_JP_10X20 | 10x20 graphic dots per character
FONT_JP_12X24 | 12x24 graphic dots per character
FONT_JP_14X28 | 14x28 graphic dots per character
FONT_KR_08X16 08x16 graphic dots per character
FONT_KR_10X20 | 10x20 graphic dots per character
FONT_KR_12X24 | 12x24 graphic dots per character
FONT_KR_14X28 | 14x28 graphic dots per character
FONT_EU_08X16 08x16 graphic dots per character
FONT_EU_10X20 | 10x20 graphic dots per character
FONT_EU_12X24 | 12x24 graphic dots per character
FONT_EU_14X28 | 14x28 graphic dots per character

Example SetFont(FONT_SYS_10X20);

Return Value None

Remarks Depending on the current font and its available font size options, this routine
specifies which font size is to be used following this call.

See Also SetLanguage

115

CipherLab C Programming Part |

SetLanguage
Purpose To select which language is to be used from the multi-language font file.
Syntax void SetLanguage (S32 setting);
Parameters S32 setting
0x10 STANDARD English (default)
Ox11 FRENCH Canadian French
0x12 HEBRAIC Hebrew
0x13 LATIN Multilingual Latin |
0x14 NODIC Nordic
0x15 PORTUGAL Portuguese
0x16 RUSS Cyrillic (Russian)
ox17 SLAVIC Latin Il (Slavic)
0x18 POLISH Central European, Latin Il (Polish)
0x19 TURKISH Turkish
Oxle Greek_737 Greek
Ox1f CP_1252 Latin |
0x20 CP_1253 Greek
0x21 CP_1254 Turkish
0x100 TYPE_UTF8 UTF-8 encode type
Example SetlLanguage(0x14); // choose the Nodic font

Return Value

Remarks

See Also

116

SetLanguage(TYPE_UTF8]RUSS); //Choose the UTF-8 type Russian font.

None

If the multi-language font file has been downloaded to the mobile computer,
then this routine can be used to specify which language font is to be used by
the system. Later, you can always change this setting in System Menu.

CheckFont, SetFont

Chapter 2 Mobile-Specific Function Library

2.12.5 FONT FILES

8600 Font File Font Size
Font8600-Multi-Languagel16.shx Font size: 08x16
Font8600-Multi-Language20.shx Font size: 10x20
Font8600-Multi-Language24.shx Font size: 12x24
Font8600-Multi-Language28.shx Font size: 14x28
Font8600-TraditionalChinesel6.shx Font size: 08x16
Font8600-TraditionalChinese20.shx Font size: 10x20
Font8600-TraditionalChinese24.shx Font size: 12x24
Font8600-TraditionalChinese28.shx Font size: 14x28
Font8600-SimplifiedChinese16.shx Font size: 08x16
Font8600-SimplifiedChinese20.shx Font size: 10x20
Font8600-SimplifiedChinese24.shx Font size: 12x24
Font8600-SimplifiedChinese28.shx Font size: 14x28
Font8600-Japanesel6.shx Font size: 08x16
Font8600-Japanese20.shx Font size: 10x20
Font8600-Japanese24.shx Font size: 12x24
Font8600-Japanese28.shx Font size: 14x28
Font8600-Korean16.shx Font size: 08x16
Font8600-Korean20.shx Font size: 10x20
Font8600-Korean24.shx Font size: 12x24
Font8600-Korean28.shx Font size: 14x28

117

CipherLab C Programming Part |

2.13 MEMORY

This section describes the routines related to the flash memory and SRAM, where
Program Manager and File System reside respectively.

Memory Size Flash Memory SRAM SD Card
8600 Series 16 MB 8 MB, 16 MB Supported
2.13.1 FLASH

The flash memory, known as program memory, where programs reside is divided into
256 memory banks, each 64 KB. The program memory is allocated to three areas,

System (Bootloader & Kernel), User (user ROM & user program), and Font.

» Bootloader location in flash: 0x14000000~0x1400FFFF

» Kernel location in flash: 0x14010000~0x143FFFFF

» User ROM location in flash: 0x14400000~0x1443FFFF

» User program location in flash: 0x14440000—~0x147FFFFF
» Font locateion in flash: 0x14800000~0x14FFFFFF
EraseSector

Purpose To erase a whole sector of the flash memory.
Syntax S32 EraseSector (void *sector_start_addr);
Example EraseSector((void *)0x14400000);

Return Value

If successful, it returns 1.

Otherwise, it returns 0.

Remarks This routine erases the flash memory before calling WriteFlash() to write data
to the flash memory.

FlashSize

Purpose To get the size of the flash memory (for storing user programs).

Syntax S32 FlashSize (void);

Example FlashSize();

Return Value

118

This routine returns the size of the flash memory in kilobyte.

Chapter 2 Mobile-Specific Function Library

WriteFlash

Purpose To write data to the flash memory.

Syntax S32 WriteFlash (void *target_addr, void *source_addr, U32 size);
Example char szData[100];

Return Value

Remarks

2.13.2SRAM

EraseSector((void *)0x14400000);
WriteFlash((void *)0x14400000, szData, 100);
If successful, it returns 1.

Otherwise, it returns O.

The flash memory can also be used to store data if the user programs have not
used all of it.

» The possible available flash memory is 64 Kbytes and its address starts
from 0x14400000.

The File System keeps user data in SRAM, which is maintained by the backup battery.
However, data loss may occur during low battery condition or when the battery is drained.
It is necessary to upload data to a host computer before putting away the mobile

computer.

free_memory

Purpose
Syntax
Example
Return Value

Remarks

To get the size of free memory in SRAM.

S32 free_memory (void);

available_memory = free_memory();

This routine returns the size of the free memory in byte.

This routine gets the amount of free (unused) memory of the file space.

init_free_memory

Purpose
Syntax
Example
Return Value

Remarks

To initialize the file space in SRAM.
void init_free_memory (void);
init_free_memory(Q);

None

This routine first tries to identify how many SRAM cards are installed, and then
initialize the overall file space (total SRAMs deducts memory of system space
and user space).

» The original contents of the file space will be wiped out after calling this
routine.

> Whenever the amount of the SRAMs installed is changed, this routine must
be called to recognize such change.

119

CipherLab C Programming Part |

RamSize

Purpose To get the size of data memory (SRAM) for storing data files.
Syntax U32 RamSize (void);

Example RamSize();

Return Value

This routine returns the size of SRAM in kilobyte.

2.13.3SD CARD
ffreebyte
Purpose To get the number of free kilobytes on SD card.
Syntax S32 ffreebyte (void);

S32 ffreebyte (const S8 *diskname);
Parameters const S8 *diskname

RAM Disk — “C:\\" or “c:\\”

(default) SD card — “A:\\” or “a:\\”
Example S32 freekb;

Return Value

if ((freekb = ffreebyte()) == -1L)
printf(“Get card free byte failed!™);
it ((freekb = ffreebyte(“C:\\"") == -1L)

printf(“Get SRAM free byte failed!”);

If successful, it returns a long integer containing the number of free kilobytes
on SD card.

On error, it returns -1L. The global variable ferrno is set to indicate the error
condition encountered.

fsize
Purpose To get the volume of SD card, excluding the space used by FAT structure.
Syntax S32 fsize (void);
S32 fsize (const S8 *diskname);
Parameters const S8 *diskname
RAM Disk — “C:\\” or “c:\\”
(default) SD card — “A:\\” or “a:\\”
Example S32 size;
if ((size = fsize()) == -1L)
printf(“Get card size failed!”);
if ((size = fsize(“C:\\"7) == -1L)

Return Value

120

printf(“Get SRAM size failed!”);

If successful, it returns a long integer containing the number of free kilobytes
on SD card.

On error, it returns -1L. The global variable ferrno is set to indicate the error
condition encountered.

Chapter 2 Mobile-Specific Function Library

2.14 FILE MANIPULATION

SRAM and SD card can be accessed directly by using the provided functions in user
application. Yet, when the mobile computer is connected to your computer via the USB
cable, it can be treated as a removable disk (USB mass storage device) as long as it is
configured properly through programming or via System Menu | Storage Menu | Run
As USB Disk. Refer to 2.14.10 Mass Storage Device and the USB Connection chapter
in Part I1.

For memory information, refer to 2.13.2 SRAM and 2.13.3 SD Card.

Note: It is not allowed for the mobile computer to directly access files on RAM and SD
card when COM5 is set to mass storage use (pass COMM_USBDISK to
SetCommType).

Many file manipulation routines are provided for programming the mobile computers.
These routines help manipulate the transaction data and ease the implementation of
database system.

Two types of file structures are supported —

» Sequential structure, called DAT file, is usually used to store the transaction data.

» Index structure is usually used to store lookup data which consists of two types of
index file. One is DBF for storing the original data records (data members), and the
other is IDX for sorting the records according to the associated key.

For DAT Files

» Use the functions provided in 2.14.5 FAT File Manipulation to access DAT files on RAM and SD
card, which can be under any directory. Filename must be given in full path while filename
extension is ignored.

Note: It can have maximum 48 files and 3 directories opened at the same time. It is
suggested that you close a file or directory whenever it is no longer desired;
otherwise, the file handles may be depleted.

For DBF Files

» Use the functions provided in 2.14.6 DBF Files and IDX Files to access DBF files on RAM and SD
card, which can be under any directory. Filename must be given in full path; however, filename
extension is not required. When creating DBF files, it will have “.DB0” as the filename extension
for the DBEF file itself and “.DB1” ~ “.DB8” for the IDX files.

» Use the functions provided in 2.14.7 File Transfer via SD Card to copy a DBF file from SRAM to
SD card, and vice versa. The source DBF file must be closed before copying.

USB Mass Storage Device

When mass storage is in use, (1) all opened files will be closed automatically and (2) if any of the
functions in 2.14.5 FAT File Manipulation is called before close_com(5), the error code
E_SD_OCCUPIED is returned to indicate the SD card is currently occupied as mass storage device.

121

CipherLab C Programming Part |

2.14.1 FILE SYSTEM

It supports FAT12/FAT16/FAT32 and allows formatting the card through programming or
via System Menu | Storage Menu | Access Ram / Access SD Card. Based on the
capacity of the card, it will automatically decide the FAT format upon calling fformat():

Card Capacity FAT Format Sectors per Cluster
= 32 MB FAT12 32

= 1GB FAT16 32

= 2GB FAT16 64

= 8GB FAT32 8

Note: The FAT format on SRAM will be FAT12 because the SRAM capacity of 8600 is 8 or
16 MB. For SD card, if the card capacity is less than or equal to 2 GB, the FAT16 file
system is created; otherwise, the FAT32 file system is created.

122

Chapter 2 Mobile-Specific Function Library

2.14.2 DISK NAME AND DIRECTORY

The system-defined drive letter for RAM is ‘C:’, and ‘A:’ for SD card.

When a file name is required as an argument passed to a function call, it must be given
in full path as shown below.

Disk File Path File in Root Directory File in Sub-directory

RAM “C:\\...” “C:\\UserFile” “C:\\SubDir\\UserFile”
“c:\\...” “c:\\UserFile” “c:\\SubDir\\UserFile”
“C:/...” “C:/UserFile” “C:/SubDir/UserFile”
“c:/...” “c:/UserFile” “c:/SubDir/UserFile”

SD Card “ANNL “A:\\UserFile” “A:\\SubDir\\UserFile”
“an\\...” “a:\\UserFile” “a:\\SubDir\\UserFile”
“A/..7 “A:/UserFile” “A:/SubDir/UserFile”
“a:/...” “a:/UserFile” “a:/SubDir/UserFile”

The file system supports hierarchical tree directory structure and allows creating
sub-directories. On SD card, several directories are reserved for particular use.

Reserved Directory Related Application or Function Remark

A:\\Program System Menu | Load Program Store programs to this folder so that you can

Program Manager | Download download them to the mobile computer:
Program Manager | Activate | » C program — *.SHX

Kernel Menu | Load Program » BASIC program — *.INI and *.SYN
Kernel Menu | Kernel Update

UPDATE_BASIC()

v v v Vv v Vv

123

CipherLab C Programming Part |

A:\\BasicRun

124

BASIC Runtime

Store DAT and DBF files that are created and
accessed in BASIC runtime to this folder.

Their permanent filenames are as follows:

DAT Filename

DAT file #1 TXACT1.DAT

DAT file #2 TXACT2.DAT

DAT file #3 TXACT3.DAT

DAT file #4 TXACT4.DAT

DAT file #5 TXACTS5.DAT

DAT file #6 TXACT6.DAT

DBF Filename

DBF file #1 Record file F1.DBO
System Default | F1.DB1
Index
Index file #1 F1.DB2
Index file #2 F1.DB3
Index file #3 F1.DB4
Index file #4 F1.DB5
Index file #5 F1.DB6

DBF file #2 Record file F2.DBO
System Default | F2.DB1
Index
Index file #1 F2.DB2
Index file #2 F2.DB3
Index file #3 F2.DB4
Index file #4 F2.DB5
Index file #5 F2.DB6

DBF file #3 Record file F3.DBO
System Default | F3.DB1
Index
Index file #1 F3.DB2
Index file #2 F3.DB3
Index file #3 F3.DB4
Index file #4 F3.DB5
Index file #5 F3.DB6

Chapter 2 Mobile-Specific Function Library

DBF file #4 Record file F4.DBO

System Default | F4.DB1
Index

Index file #1 F4.DB2

Index file #2 F4.DB3

Index file #3 F4.DB4

Index file #4 F4.DB5

Index file #5 F4.DB6

DBF file #5 Record file F5.DBO

System Default | F5.DB1
Index

Index file #1 F5.DB2

Index file #2 F5.DB3

Index file #3 F5.DB4

Index file #4 F5.DB5

Index file #5 F5.DB6

A:\\AG\DBF Application Generator (a.k.a. AG) Store DAT, DBF, and Lookup files that are
. created and/or accessed in Application

A:N\\AG\DAT Generator to this folder.

A:\\AG\EXPORT

A:\\NAG\IMPORT

2.14.3 FILE NAME

A file name must follow 8.3 format (= short filenames) — at most 8 characters for
filename, and at most three characters for filename extension. The following characters
are unacceptable: “* + ,:; <=>=>?]1[1

» It can only display a filename of 1 — 8 characters (the null character not included),
and filename extension will be displayed if provided. If a file name specified is longer
than eight characters, it will be truncated to eight characters.

» Long filenames, at most 255 characters, are allowed when using the mobile computer
as a mass storage device. For example, you may have a filename “123456789.txt”
created from your computer. However, when the same file is directly accessed on the
mobile computer, the filename will be truncated to “123456—~1.txt".

» If a file name is specified other than in ASCII characters, in order for the mobile
computer to display it correctly, you may need to download a matching font file to the
mobile computer first.

» The file name is not case-sensitive.

125

CipherLab C Programming Part |

2.14.4 FILEINFO STRUCTURE

Use fgetinfo() and freaddir() to access the file or directory information.

typedef struct {

U32 fsize;
U16 fdate;
Uil6 ftime;
U8 fattrib;
S8 fname[13];
} FILEINFO;
Member Description
U32 fsize File size in bytes.
Ul6 fdate Date of last write operation. This is a 16-bit field:
Bits 0—4 Day of month
» Valid range 1-31
Bits 5—8 Month of year
» Valid range 1-12
Bits 9—~15 Year count since 1980
» Valid range 0~127 for 1980~2107
Ul6 ftime Time of last write operation. This is a 16-bit field:
Bits 0—4 Seconds (each increment for 2 seconds)
» Valid range 0—29 for 0~58
Bits 5~10 Minutes
» Valid range 0—59
Bits 11~15 | Hours
» Valid range 0—23
u8 fattrib File attributes:
Ox01 READ_ONLY
0x02 HIDDEN
0x04 SYSTEM
0x08 VOLUME_ID
0x10 DIRECTORY
0x20 ARCHIVE
S8 fname[13] File name must follow 8.3 format. This field is split into two parts:

(1) 8 characters for file name

(2) 3 character s for file extension

126

Chapter 2 Mobile-Specific Function Library

2.14.5 FAT FILE MANIPULATION

chmod

Purpose To change the attributes of a file or directory, by the given file path.

Syntax S32 chmod (const S8 *filename, S32 attribute);

Parameters const S8 *filename
Pointer to a buffer where the filename of the file to be changed is stored.
S32 attribute
New attribute value given to the file. It can be one or more of the following:
Ox00 FA_NOR Normal file (= no attributes)
Ox01 FA_RDO Read-only file
O0x02 [FA_HID Hidden file (= does not affect accessibility)
Ox04 FA_SYS System file
O0x20 FA_ARC Archive bit (= this bit would be set if file is created or

updated)
Example S32 result;

Return Value

Remarks

See Also

result = chmod(“A:\\myfile.bin”, FA_SYS|FA_RDO);
if (result == -1)

printf(“‘chmod error\n”);
If successful, it returns the new attributes.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

This routine changes the attributes associated with the file specified by the
argument filename. The filename must be given in full path and follow 8.3
format.

chmodfp

127

CipherLab C Programming Part |

chmodfp

Purpose To change the attributes of the file by using the file handle.

Syntax S32 chmodfp (S32 fd, S32 function, S32 attribute);

Parameters S32 fd
File handle of the target file.

S32 function

(0] Return the current setting

1 Set new attributes

S32 attribute

New attribute value given to the file. It can be one or more of the following:

Ox00 FA_NOR Normal file (= no attributes)

Ox01 FA_RDO Read-only file

Ox02 | FA_HID Hidden file (= does not affect accessibility)

Ox04 FA_SYS System file

O0x20 FA_ARC Archive bit (=this bit would be set if file is created or
updated)

Example S32 fd,result;
fd = fopen(“C:\\myfile.bin”,“rb”);
result = chmodfp(fd, 1, FA_SYS|FA_RDO);
if (result == -1)

printf(“chmodfp error\n”);

Return Value If successful, it returns the new attributes.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Remarks This routine changes the attributes of a file. The new attributes will not take
effect until the file is closed and re-opened. For example, if the file is currently
open for writing, and then made read-only, writing to the file is still allowed
until the file is closed and re-opened.

See Also chmod

128

Chapter 2 Mobile-Specific Function Library

fclose
Purpose To close a file opened earlier for buffered input and output using fopen().
Syntax S32 fclose (S32 fd);
Parameters S32 fd
File handle of the target file.
Example S32 fd;

Return Value

fd = fopen(“C:\\myFfile.bin”,“wb”);
if (fclose(fd)!=0)

printf(“file close error\n”);
If successful, it returns O.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Remarks If the file has been opened for writing data, the contents of the buffer
associated with the file are flushed before the file is closed.

See Also fflush, fopen

fclosedir

Purpose To close a directory.

Syntax S32 fclosedir (S32 dir_handle);

Parameters S32 dir_handle
File handle of the target directory.

Example S32 dir_handle;

Return Value

See Also

dir_handle = fopendir(““C:\\SubDir™);

if (fclosedir(dir_handle) !=0)
printf(“Fail to close a directory.\n”);

If successful, it returns O.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

fopendir

129

CipherLab C Programming Part |

fcopy
Purpose To copy a file.
Syntax S32 fclosedir (const S8 *srcfile, const S8 *dstfile);
Parameters const S8 *srcfile
Pointer to a buffer where the filename of the source file is stored.
const S8 *dstfile
Pointer to a buffer where the filename of the destination file is stored.
Example S32 result;

Return Value

result=fFcopy(“C:\\myfile_bin”,“A:\\myFfile2_bin”);
if(result!=0){
printf(“fcopy failed.\n”);
}
If successful, it returns O.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Remarks This routine copies one file to another. If the destination file already exists, this
routine returns with error. The filename must be given in full path and follow
8.3 format.

feof

Purpose To check whether or not the file pointer reaches the end-of-file (eof) position.

Syntax S32 feof (S32 fd);

Parameters S32 fd
File handle of the target file.

Example S32 fd,c;

Return Value

See Also

130

fd = fopen(“C:\\myfile.bin”,“rb”);
while (Ifeof(fd)) {

c = fgetc(fd);
}
If EOF is reached, it returns a non-zero value.
If EOF is not reached, it returns O.

clearerr

Chapter 2 Mobile-Specific Function Library

fflush
Purpose To flush the output buffer associated with a file opened for buffered 1/0. This
will cause any remaining data in the output buffer written to the file.
Syntax S32 fflush (832 fd);
Parameters S32 fd
File handle of the target file.
Example S32 fd;

Return Value

See Also

fopen(“C:\\myfile_bin”,“wb™);
fwrite(buffer, 1, 4, fd);
fflush(fd);

If successful, it returns O.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

fclose

auto_flush

Purpose
Syntax

Parameters

Return Value

See Also

To flush all opened files periodically.

S32 auto_flush (S32 period);

S32 period
(0] Disable auto flush (default).
1-15 Enable auto flush every 1—~15 minutes.

It returns 1 if a valid time is set.
Else, it returns O.
fflush, flush_DBF

131

CipherLab C Programming Part |

fformat
Purpose To create a file system on RAM or SD card.
Syntax S32 fformat (void);

S32 fformat (const S8 *diskname);
Parameters const S8 *diskname

RAM Disk — “C:\\” or “c:\\”

(default) SD card — “A:\\” or “a:\\”
Example if (fformat() !'=0))

Return Value

printf(“Format card failed!\n”);
if (Fformat(“C:\\"") 1=0)
printf(“Format SRAM failed!\n”);
If successful, it returns O.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine creates a file system based on the size of the SD card. If the card
size is smaller or equals to 2GB, it creates FAT file system; otherwise, it
creates FAT32 file system

See Also fopendir, freaddir

fgetc

Purpose To read one character from a file opened for buffered input.

Syntax S32 fgetc (S32 fd);

Parameters S32 fd

File handle of the target file.

Example S32 fd;

S32 c;

Return Value

Remarks

See Also

132

fd = fopen(“A:\\myfile.bin”,“rb”);
while (Ifeof(fd)) {
c = fgetc(fd);
}
If successful, it returns the character read from the buffer.
On error, it returns -1.

» Call ferror() and feof() to determine if there was an error or the file simply
reached its end.

This routine reads a character from the current position of the file, and then
increments this position. The character is returned as an integer.

fgets, fputc, fputs

Chapter 2 Mobile-Specific Function Library

fgetinfo
Purpose To read file or directory information.
Syntax S32 fgetinfo (const S8 *filename, FILEINFO *fileinfo);
Parameters const S8 *filename
Pointer to a buffer where the filename of the target file or directory is stored.
The filename must be given in full path and follow 8.3 format.
FILEINFO *fileinfo
Pointer to FILEINFO structure, which is defined in the header file.
Example FILEINFO fileinfo;

Return Value

it (fgetinfo(“c:\\myfile.bin”, &fFileinfo) == 0) {
printf(“file size:%d”, fileinfo.fsize);

}

If successful, it returns O.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

See Also fopen, fopendir
fgetpos
Purpose To get and save the current read/write position of a file.
Syntax S32 fgetpos (S32 fd, U32 *position);
Parameters S32 fd
File handle of the target file.
U32 *position
Pointer to a buffer where the current position of the file is returned.
Example S32 fd,c;

Return Value

Remarks

See Also

U32 position;

fd = fopen(“C:\\myFfile_bin”, “rb>);

c = fgetc(fd);

if (fgetpos(fd, &position) == 0)
printf(“position:%ld”, position);

If successful, it returns O.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

This routine fills position with a value representing the current position of the
file.

fsetpos

133

CipherLab C Programming Part |

fgets
Purpose To read a line from a file opened for buffered input. This line is read until a
newline (\n) character is encountered or until the number of characters reaches
the specified maximum.
Syntax S8 *fgets (S8 *string, S32 max_char, S32 fd);
Parameters S8 *string
Pointer to a buffer where the string is stored (by character).
S32 max_char
The maximum number of characters to be stored.
S32 fd
File handle of the target file.
Example S32 fd;

Return Value

Remarks

See Also

134

S8 string [81];

fd = fopen(“C:\\myfile.bin”, “r”);
if(fgets(string, 80, fd) = 0)
printf(“%s\n”, string);

If successful, it returns the pointer string.
On error, it returns 0.

» Call ferror() and feof() to determine if there was an error or the file simply
reached its end.

This routine reads at most one less than the number of characters specified by
max_char from the file into the buffer pointed to by string. No additional
characters are read after the newline character (which is retained). A null
character is written immediately after the last character read into the buffer.

fgetc, fputc, fputs

Chapter 2 Mobile-Specific Function Library

fopen
Purpose To open or create a file for buffered input and output operations.
Syntax S32 fopen (const S8* filename, const S8* mode);
Parameters const S8* filename
Pointer to a buffer where the filename of the file to be opened is stored. The
filename must be given in full path and follow 8.3 format.
const S8* mode
Type of access permitted:
“r” Open for reading in text mode.
“w” Create or truncate for writing in text mode.
“a” Append in text mode. (open/create for writing at EOF)
“rb” Open for reading in binary mode.
“wb” Create or truncate for writing in binary mode.
“ab” Append in binary mode. (open/create for writing at EOF)
“r+” Open for reading and writing in text mode.
“w+”’ Create or truncate for reading and writing in text mode.
“a+”’ Open/create for reading and appending in text mode.
“r+b” Open for reading and writing in binary mode.
“w+b” Create or truncate for reading and writing in binary mode.
“a+b” Open/create for reading and appending in binary mode.
Example S32 fd;

Return Value

Remarks

See Also

if ((fd = fopen(“C:\\myfile.bin”, “rb”)) == 0) {
printf(*fail to open a file.\n”);

}

If successful, it returns the file handle.

On error, it returns 0. The global variable ferrno is set to indicate the error
condition encountered.

This routine opens the file specified by the argument filename. The mode string
specifies the type of access requested. If the operation succeeds, it returns a
file handle of the file.

» Up to 48 files can be opened at the same time. However, it is suggested
that you close a file whenever it is no longer desired; otherwise, file
handles may be depleted. (ferrno: E_NO_AVAILABLE_HANDLE)

» If the argument filename includes a subdirectory, the specified subdirectory
must exist; or an error is returned.

» In binary mode, your program can access every byte in the file. In text
mode, ‘\r’ is filtered out when reading a file and extra ‘\r’ is added before
‘\n” when writing a file.

Fclose

135

CipherLab C Programming Part |

fopendir

Purpose
Syntax

Parameters

Example

Return Value

To open an existing directory.
S32 fopendir (const S8 *dirname);
const S8 *dirname
Pointer to a buffer where the name of directory to be opened is stored.
if (fopendir(“A:\\SubDir”) == 0)
printf(“Fail to open a directory.\r”);
If successful, it returns the directory handle.

On error, it returns 0. The global variable ferrno is set to indicate the error
condition encountered.

Remarks This routine opens an existing directory specified by the argument dirname.
The directory name must be given in full path and follow 8.3 format.

» Up to 3 directories can be opened at the same time. However, it is
suggested that you close a directory whenever it is no longer desired;
otherwise, directory handles may be depleted. (ferrno:
E_NO_AVAILABLE_HANDLE)

» If the argument dirname includes a subdirectory, the specified subdirectory
must exist; or an error is returned.

See Also fclosedir, fformat, freaddir

fputc

Purpose To write one character to a file opened for buffered output.
Syntax S32 fputc (S32 ¢, S32 fd);

Parameters S32c

The character to be written.

S32 fd

File handle of the target file.

Example S32 fd,c;

Return Value

Remarks

See Also

136

fd = fopen(“C:\\myFile_bin”,“wb’)
for(c="A";c<’Z7 ;e++){
fputc(c,fd);

}
fclose(fd);

If successful, it returns the character written.
On error, it returns -1.
» Call ferror() to determine the error condition encountered.

This routine writes a character given in the argument c to the file in the current
position and then increments this position after writing the character.

fgetc, fgets, fputs

Chapter 2 Mobile-Specific Function Library

fputs
Purpose To write a null-terminated string to a file opened for buffered output.
Syntax S32 fputs (const S8 *string, S32 fd);
Parameters const S8 *string
Pointer to a buffer where the null-terminated string is stored.
S32 fd
File handle of the target file.
Example S32 fd;
S8 buffer [81] = “Testing the function fputs”;
fd = fopen(“A:\\myFfile.bin”, “wb™);
fputs(buffer, fd);
fclose(fd);
Return Value If successful, it returns the number of characters written.
On error, it returns -1.
» Call ferror() to determine the error condition encountered.
Remarks This routine writes a string given in the argument string to the file in the
current position and then increments this position after writing the character.
See Also fgetc, fgets, fputc

137

CipherLab C Programming Part |

fread
Purpose To read a specified number of data items, each of a given size, from the
current position in a file opened for buffered input.
Syntax S32 fread (void *ptr, S32 size, S32 count, S32 fd);
Parameters void *ptr
Pointer to a buffer where data is stored.
S32 size
Size in bytes of each data item.
S32 count
The maximum number of items to be read.
S32 fd
File handle of the target file.
Example S32 fd;
S32 buffer[81];
S32 count;

Return Value

Remarks

See Also

138

fd = fopen(“C:\\myFfile.bin”, “rb);

count = fread(buffer, 1, 80, fd);

printf(“Read %d characters\n”, count);

It returns the number of items actually read from the file.

» If the number of items read is not equal to count, call ferror() and feof() to
determine if there was an error or the file simply reached its end.

The number of items returned will be equal to count unless EOF is reached or
an error occurs. After the read operation is complete, the current position will
be updated.

fwrite

Chapter 2 Mobile-Specific Function Library

freaddir

Purpose To read directory entries in sequence.

Syntax S32 freaddir (S32 dir_handle, FILEINFO *fileinfo) ;
Parameters S32 dir_handle

File handle of the target directory.
FILEINFO *fileinfo

Pointer to FILEINFO structure, which is defined in the header file.
Example FILEINFO finfo;

S32 dir_handle;

dir_handle = fopendir(“A:\\SubDir™);

if ((freaddir(dir_handle, &finfo) == 0) &&Finfo.fname[0]) {

printfF(“File Name is %s”, finfo.fname);

}

Return Value If successful, it returns O.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine reads directory entries in sequence, and all items in the directory
can be read by calling freaddir routine repeatedly. When all directory items
have been read and no item to read, the routine returns a null string into
fileinfo.fname without any error.

See Also fformat, fopendir

fremove

Purpose To delete a file.

Syntax S32 fremove (const S8 *filename);
Parameters const S8 *filename

Pointer to a buffer where the filename of the file to be deleted is stored. The
filename must be given in full path and follow 8.3 format.

Example S32 result;
result=fFremove(“C:\\myfile.bin”);
if(result!=0){

printf(“fail to remove a file\n”);
}
Return Value If successful, it returns O.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine deletes the file specified by the argument filename. The filename
must include the subdirectory if there is any, such as “A:\\Dir\\File”.

See Also frename, rmdir

139

CipherLab C Programming Part |

frename
Purpose To rename (or move) an existing file or directory.
Syntax S32 frename (const S8 *oldname, const S8 *newname);
Parameters const S8 *oldname
Pointer to a buffer where the old filename of the file is stored.
const S8 *newname
Pointer to a buffer where the new filename of the file is stored.
Example S32 result

Return Value

result=fFrename(“C:\\myfile_bin”, “C:\\myfile2_bin”);
if(result!=0){
printf(“fail to rename a file.\n”);
}
If successful, it returns O.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine changes the filename from oldname to newname. By changing the
directory, it also allows moving the file to a different directory. The filename
must be given in full path and follow 8.3 format.

See Also fremove, mkdir, rmdir

fscan

Purpose To update the information about free memory on SD card.

Syntax S32 fscan (void);

Example if (fscan() != 0){

Return Value

Remarks

140

printf(“fscan fail\r\n”);
}

If successful, it returns O.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Some card has inaccurate information about free memory, resulting in failure
to get the correct return value of ffreebyte(). This routine scans the card to
update such information. The process might take some time to complete
scanning and updating.

Chapter 2 Mobile-Specific Function Library

fseek

Purpose To reposition the file pointer.

Syntax S32 fseek (832 fd, S32 offset, S32 origin);
Parameters S32 fd

File handle of the target file.

S32 offset

Offset of new position (in bytes) from origin.

S32 origin

File position from which to add offset:

SEEK_SET (1) Offset from the beginning of the file.

SEEK_CUR (0) Offset from the current position of the file pointer.

SEEK_END (-1) | Offset from the end of the file.
Example S32 fd;

fd =fopen(“C:\\myfile_bin”,”rb”);

if (fseek(fd, 30L, SEEK_SET) != 0)

printf(“fseek failed!\n”);

Return Value If successful, it returns O.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine repositions the file_pointer by seeking a number of bytes (offset)
from the given position (origin). If the file is opened in text mode, offset should
be 0 or the value returned by ftell().

See Also ftell

141

CipherLab C Programming Part |

fsetpos
Purpose To set the position where reading or writing can take place in a file opened for
buffered 1/0.
Syntax S32 fsetpos (S32 fd, const U32 *newposition);
Parameters S32 fd
File handle of the target file.
const U32 *newposition
Pointer to a buffer where the new position of the file is stored.
Example S32 fd;

Return Value

U32 curpos;

fd =fopen(“C:\\myfile_bin”,”rb”);

curpos=10;

if (fsetpos(fd, &curpos) = 0){
printf(“fsetpos failed.\n”);

}

If successful, it returns O.

On error, it returns a non-zero value. The

indicate the error condition encountered.

global variable ferrno is set to

Remarks This routine sets the file pointer of the opened file to a new position
newposition.

See Also fgetpos

ftell

Purpose To get the current file pointer position.

Syntax S32 ftell (S32 fd);

Parameters S32 fd
File handle of the target file.

Example S32 fd;

Return Value

Remarks

See Also

142

S32 curpos;

fd =fopen(""A:\\myfile.bin","rb");

if ((curpos = ftell(fd)) == -1L)
printf(“ftell failed!”);

If successful, it returns a long integer containing the number of bytes for the
offset from the beginning of the file to the current position.

On error, it returns -1L. The global variable ferrno is set to indicate the error

condition encountered.

This routine returns the current read/write position of the file.

fseek

Chapter 2 Mobile-Specific Function Library

ftruncate
Purpose To truncate a file from the current file pointer.
Syntax S32 ftruncate (S32 fd);
Parameters S32 fd
File handle of the target file.
Example S32 fd,result;

Return Value

fd = fopen(“C:\\ myfile.bin”, “wb™);
fseek(fd, 10, SEEK_SET);
result=ftruncate(fd);
if(result!=0){
printf(“ftruncate failed.\n”);

//truncate file size to 10 bytes

}
fclose(fd);

If successful, it returns 0.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Remarks Use fseek() to position the file pointer where you want to truncate a file from.
See Also fseek
fwrite
Purpose To write a specified number of data items, each of a given size, from a buffer
to the current position in a file opened for buffered output.
Syntax S32 fwrite (void *buffer, S32 size, S32 count, S32 fd);
Parameters void *buffer
Pointer to a buffer where data is stored.
S32 size
Size in bytes of each data item.
S32 count
The maximum number of items to be written.
S32 fd
File handle of the target file.
Example S32 fd;
S8 buffer [81] = “Testing the fwrite function”;
S32 count;

fd = fopen(“C:\\myFfile.bin”, “wb™)

count = fwrite(buffer, 1, 20, fd);

printf(“%d characters written to a file\n”, count);
fclose(fd);

143

CipherLab C Programming Part |

Return Value

It returns the number of items actually written to the file.

If the number of items written is not equal to count, call ferror() to determine if
there was an error.

Remarks The number of items returned will be equal to count unless an error occurs.
After the write operation is complete, the current position will be updated.
See Also fread
mkdir
Purpose To create a new directory.
Syntax S32 mkdir (const S8 *newdir);
Parameters const S8 *newdir
Pointer to a buffer where the name of directory to be created is stored.
Example if (mkdir(“A:\\SubDir”) != 0)

Return Value

printf(“Fail to create a directory.”);
If successful, it returns O.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine creates a new directory specified by the argument newdir. The
directory name must be given in full path and follow 8.3 format.

See Also rmdir

rmdir

Purpose To delete a directory.

Syntax S32 rmdir (const S8 *dir);

Parameters const S8 *dir
Pointer to a buffer where the name of directory to be deleted is stored.

Example if (rmdir(“C:\\SubDir™) = 0)

Return Value

Remarks

See Also

144

printf(“Fail to delete a directory.”);

If successful, it returns 0.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

This routine deletes the directory specified by the argument dir from the file
system. The dir must include the subdirectory if there is any, such as
“A:\\SubDir1\\SubDir2”. The directory must be empty; otherwise, an error is
returned for it cannot be removed. An attempt to remove the root directory
also returns an error.

fremove, mkdir

Chapter 2 Mobile-Specific Function Library

2.14.6 DBF FILES AND IDX FILES

DBF files and IDX files form the platform of database system.

» A DBF file has a fixed record length structure. This is the file that stores data records
(members). Whereas, the associated IDX files are the files that keep information of
the position of each record stored in the DBF files, but they are re-arranged (sorted)
according to some specific key values.

A library would be a good example to illustrate how DBF and IDX files work. When you
are trying to find a specific book in a library, you always start from the index. The book
can be found by looking into the index categories of book title, writer, publisher, ISBN
number, etc. All these index entries are sorted in ascending order for easy lookup
according to some specific information of books (book title, writer, publisher, ISBN
number, etc.) When the book is found in the index, it will tell you where the book is
actually stored.

As you can see, the books kept in the library are analogous to the data records stored in
the DBF file, and, the various index entries are just its associated IDX files. Some
information (book title, writer, publisher, ISBN number, etc.) in the data records is used
to create the IDX files.

KEY NUMBER

Each DBF file can have maximum 8 associated IDX files, and each of them is identified by
its key (index) number. The key number is assigned by user program when the IDX file is
created.

Note: The valid key nhumber ranges from 1 to 8.

KEY VALUE

Data records are not fetched directly from the DBF file but rather through its associated
IDX files. The value of file pointers of the IDX files (index pointers) does not represent
the address of the data records stored in the DBF file. It indicates the sequence number
of a specific data record in the IDX file.

145

CipherLab C Programming Part |

add_member

Purpose To add a data record (member) to a DBF file.
Syntax S32 add_member (S32 DBF_fd, S8 *member);
Parameters S32 DBF_fd

File handle of the target DBF file.

S8 *member

Pointer to a buffer where new member is stored.
Example add_member(DBF_fd, member);
Return Value If successful, it returns 1.

On error, it returns 0.

> An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning
2 File specified by DBF_fd does not exist.
4 File specified by DBF_fd is not a DBF file.
7 Invalid file handle.
8 File not opened.
10 No free file space for adding members.
Remarks This routine adds a data record (member) to a DBF file (DBF_fd) and adds

index entries to all the associated IDX files.

> If the length of the added member is greater than allowed for the DBF file
(member_len in the create_DBF() function), the member will be truncated
to fit in.

See Also create_DBF, delete_member

146

Chapter 2 Mobile-Specific Function Library

close_DBF
Purpose To close a previously opened or created DBF file and its associated IDX files.
Syntax S32 close_DBF (S32 DBF_fd);
Parameters S32 DBF_fd
File handle of the target DBF file.
Example if (close DBF(DBF_fd)) puts(“DBF file is closed!\n”);
Return Value If successful, it returns 1.
On error, it returns 0.

» An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2 File specified by DBF_fd does not exist.

4 File specified by DBF_fd is not a DBF file.

7 Invalid file handle.

8 File not opened.

Remarks This routine adds a data record (member) to a DBF file (DBF_fd) and adds
index entries to all the associated IDX files.

> If the length of the added member is greater than that defined for the DBF
file (member_len in the create_DBF() function), the member will be
truncated to fit in.

See Also open_DBF
flush_DBF
Purpose To flush the DBF record and all associated indexes by its handle.
Syntax S32 flush_DBF (S32 DBF_fd);
Parameters S32 DBF_fd
File handle of the target DBF file.
Return Value If successful, it returns 1.
On error, it returns 0.

Error Code Meaning

4 File specified by DBF_fd is not a DBF file.

7 Invalid file handle.

8 File not opened.

Remarks Use fflush to flush the DAT files.
See Also fflush

147

CipherLab C Programming Part |

create_DBF
Purpose To create a DBF file and get its file handle for further processing.
Syntax S32 create_DBF (const S8 *filename, S16 member_len);
Parameters const S8 *filename
Pointer to a buffer where the filename of the file to be created is stored.
» The filename must be given in full path without exceeding 250 bytes.
Refer to 2.14.2 Disk Name and Directory on how to specify a file path.
> If the Disk letter is not given, RAM Disk will be specified by default.
> File extension “.DB0” can be omitted.
S16 member_len
Maximum member (record) length of the DBF file.
» Any member subsequently added to this DBF file with length greater than
the maximum length will be truncated to fit in.
Example if (fd = create_DBF(*“C:\\datal.DBO0”, 64) > 0) puts(“datal is

Return Value

Remarks

See Also

148

created!\n”);
If successful, it returns the file handle.
On error, it returns -1.

> An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

1 filename is a NULL string.

6 Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

9 The value of member_len is invalid.

12 File specified by filename already exists.

This routine creates a DBF file (filename) with its member length specified
(member_len), and gets the file handle of it.

» A file handle is a positive integer (greater than zero) used to identify the
file for subsequent file manipulation on the file.

» User-defined indexes may be created after the DBF file is created.

close_DBF, create_index, open_DBF

Chapter 2 Mobile-Specific Function Library

create_index

Purpose

Syntax

Parameters

Example

Return Value

Remarks

See Also

To create an IDX file of a DBF file.

S32 create_index (S32 DBF_fd, S32 key number, S16 key_ offset, S16
key len);

S32 DBF_fd

File handle of the target DBF file.

S32 key_number

Key number of the IDX file to be created.

S16 key_offset

Offset in bytes where the key value in a member begins.

S16 key_len

Length of key value of the IDX file: Max. 1024
create_index(DBF_fd, 1, 0, 10);

If successful, it returns 1.

On error, it returns 0.

» An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2 File specified by DBF_fd does not exist.

4 File specified by DBF_fd is not a DBF file.

6 Cannot create file. Because it is beyond the maximum

number of files allowed in the system.
Invalid file handle.
File not opened.

13 The value of key_number is invalid.

17 The value of key_offset or key_len is invalid.

18 DBEF file specified by DBF_fd is not empty.

19 IDX file specified by key_number already exists.

This routine creates an IDX file (key_number), which is associated with a DBF

file

(DBF_fd). The key field of the IDX file is specified by key_ offset and

key_len.

4

The key field should be within member_len as defined in the create_DBF()
function. That is, key_offset plus key_len should not be greater than
member_len.

This routine can only be called before any members are added to the DBF
file, that is, when the DBF file is empty (no members exist). If any member
exists in the DBF file, rebuild_index() should be used instead.

create_DBF, rebuild_index, remove_index

149

CipherLab C Programming Part |

delete_member

Purpose To delete a data record (member) from a DBF file.
Syntax S32 delete_member (532 DBF_fd, S32 key_number);
Parameters S32 DBF_fd

File handle of the target DBF file.

S32 key_number

Key number of the target IDX file.
Example delete_member(DBF_fd, 1);
Return Value If successful, it returns 1.

On error, it returns 0.

> An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning
2 File specified by DBF_fd does not exist.
4 File specified by DBF_fd is not a DBF file.
7 Invalid file handle.
8 File not opened.
10 Not enough free block.
13 The value of key_number is invalid.
14 IDX file specified by key_number does not exist.
16 No members exist in the DBF file.
Remarks This routine deletes a data record (member) pointed to by the index pointer of

an IDX file (key_number), which is associated with a DBF file (DBF_fd).

See Also add_member, has_member

150

Chapter 2 Mobile-Specific Function Library

get_member

Purpose To read a data record (member) from a DBF file.
Syntax S32 get_member (S32 DBF_fd, S32 key_number, S8 *buffer);
Parameters S32 DBF_fd

File handle of the target DBF file.
S32 key_number

Key number of the target IDX file.
S8 *buffer

Pointer to a buffer where the member is read into. The size of buffer should
be at least one byte more than the member length (buffer = member length
+1) because it will add the terminating null character.

Example if (get_member(DBF_fd, 1, buffer) == 0) puts(buffer);
Return Value If successful, it returns 1.
On error, it returns 0.

> An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning
2 File specified by DBF_fd does not exist.
4 File specified by DBF_fd is not a DBF file.
7 Invalid file handle.
8 File not opened.
13 The value of key_number is invalid.
14 IDX file specified by key_number does not exist.
16 No members exist in the DBF file.
Remarks This routine reads a data record (member) pointed to by the index pointer of

an IDX file (key_number), which is associated with a DBF file (DBF_fd).

See Also has_member

151

CipherLab C Programming Part |

has_member

Purpose To check whether or not a specific data record (member) exists in a DBF file.
Syntax S32 has_member (832 DBF_fd, S32 key_number, S8 *key_value);
Parameters S32 DBF_fd

File handle of the target DBF file.
S32 key_number

Key number of the target IDX file.
S8 *key_value

Pointer to a buffer where a key value is held to identify a specific member.

Example if (has_member(DBF_fd, 1, (S8 *)“JOHN”) == 1)
{
get_member(DBF_fd, 1, buffer);
puts(buffer);
}
else
{
printf(“JOHN is not on the name list!\n™);
}
Return Value If a member exists, it returns 1.

If a member does not exist, it returns 0.
On error, it returns -1.

> An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2 File specified by DBF_fd does not exist.

4 File specified by DBF_fd is not a DBF file.

7 Invalid file handle.

8 File not opened.

13 The value of key_number is invalid.

14 IDX file specified by key _number does not exist.
Remarks This routine searches for the key_value in any data record (member) of an IDX

file (key_number), which is associated with a DBF file (DBF_fd).

> If there is a complete match to the key_ value, the index pointer will point
to the first of all matches.

» In case there is more than one member containing the key value, check
each member sequentially from the one currently is pointed to by the index
pointer until the desired member is found.

See Also get_member

152

Chapter 2 Mobile-Specific Function Library

Iseek_DBF

Purpose To reposition the file pointer of an IDX file.
Syntax S32 Iseek_DBF (832 DBF_fd, S32 key_number, S32 offset, S32 origin);
Parameters S32 DBF_fd

File handle of the target DBF file.

S32 key_number

Key number of the target IDX file.

S32 offset

Offset of new position, sequence number from origin.

S32 origin

1 Offset from the first index of the IDX file.

(0] Offset from the current position of the index pointer.

-1 Offset from the last index of the IDX file.
Example Iseek DBF(DBF_fd, 1, 1L, 0); // move to next member
Return Value If successful, it returns the sequence number of offset.

On error, it returns -1.

» An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2 File specified by DBF_fd does not exist.

4 File specified by DBF_fd is not a DBF file.

7 Invalid file handle.

8 File not opened.

9 The value of origin is invalid.

13 The value of key_number is invalid.

14 IDX file specified by key _number does not exist.
15 New position is beyond end-of-file.

Remarks This routine repositions the file pointer of an IDX file (key_number), which is
associated with a DBF file (DBF_fd), by seeking a sequence number (offset)
from the given position origin.

See Also tell_DBF

153

CipherLab C Programming Part |

member_in_DBF

Purpose To get the total number of members in a DBF file.
Syntax S32 member_in_DBF (S32 DBF_fd);
Parameters S32 DBF_fd

File handle of the target DBF file.
Example total_member = member_in_DBF(DBF_Tfd);
Return Value If successful, it returns the number of members.
On error, it returns -1.

» An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2 File specified by DBF_fd does not exist.
4 File specified by DBF_fd is not a DBF file.
7 Invalid file handle.

8 File not opened.

154

Chapter 2 Mobile-Specific Function Library

open_DBF
Purpose To open an existing DBF file and get its file handle for further processing.
Syntax S32 open_DBF (const S8 *filename);
Parameters const S8 *filename
Pointer to a buffer where the filename of the DBF file to be opened is stored.
» The filename must be given in full path without exceeding 250 bytes.
Refer to 2.14.2 Disk Name and Directory on how to specify a file path.
> If the Disk letter is not given, RAM Disk will be specified by default.
> File extension “.DB0” can be omitted.
Example if (fd = open_DBF(*“A:/datal.DB0”) > 0) puts(“datal is opened!\n™);

Return Value

Remarks

See Also

If successful, it returns the file handle.
On error, it returns -1.

» An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

1 filename is a NULL string.

2 File specified by filename does not exist.

4 File specified by filename is not a DBF file.
5 File specified by filename is already opened.

This routine simultaneously opens all the IDX (key) files associated with the
DBF file being opened. After the DBF is opened, the index pointers of all the
associated index files point to the beginning of the respective index.

» A file handle is a positive integer (greater than zero) used to identify the
file for subsequent file manipulation on the file.

close_DBF, create_DBF, create_index

155

CipherLab C Programming Part |

rebuild_index

Purpose

Syntax

Parameters

Example

Return Value

156

To rebuild an IDX file of a DBF file.

S32 rebuild_index (S32 DBF_fd, S32 key_number, S32 base_index, S16
key_ offset, S16 key_len);

S32 DBF_fd

File handle of the target DBF file.
S32 key_number

Key number of the target IDX file.

> If the IDX file already exists, it will be overwritten; otherwise, this routine
will create a new IDX file.

S32 base_index
Base index as the preference index.

> If no base index is preferred, the base_index should be 0. Then, the
resulting sequence will be the original member sequence in the DBF file.

S16 key_offset

Offset in bytes where the key value in a member begins.
S16 key_len

Length of key value of the IDX file: Max. 1024
rebuild_index(DBF_fd, 1, 0, 0, 10);

If successful, it returns 1.

On error, it returns 0.

> An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2 File specified by DBF_fd does not exist.

4 File specified by DBF_fd is not a DBF file.

6 Cannot create file. Because it is beyond the maximum

number of files allowed in the system.
Invalid file handle.

File not opened.

10 No free file space for rebuilding index.

13 The value of key_number is invalid.

14 IDX file specified by key_number does not exist.
17 The value of key_offset or key_len is invalid.

20 The value of base_index is invalid.

21 Base_index does not exist.

Remarks

See Also

Chapter 2 Mobile-Specific Function Library

This routine rebuilds or creates an IDX file (key_number), which is associated
with a DBF file (DBF_fd). It can be used whenever an IDX file has the same
values for a key field. The key field of the IDX file is specified by key_offset and
key_len.

» base_index specifies the IDX file from which this routine takes as the input
sequence for building the new IDX file. For example, if a report is to be
generated by the sequence of date, department, and ID number, and the
date and department data may be repeated. This can be done by rebuilding
the ID number index first. Then, rebuild the department index with the ID
number index as the base index. And finally, rebuild the date index with
the department index as the base index. The resulting member sequence in
the date index will be in date, department, and ID number.

» The key field should be within member_len as defined in the create_ DBF()
function. That is, key_offset plus key_len should not be greater than
member_len.

create_index, remove_index

remove_index

Purpose
Syntax

Parameters

Example

Return Value

See Also

To delete an IDX file of a DBF file.

S32 remove_Index (S32 DBF_fd, S32 key_number);

S32 DBF_fd

File handle of the target DBF file.

S32 key_number

Key number of the target IDX file.

if (remove_index(DBF_fd, 1)) puts(“index is removed!\n”);
If successful, it returns 1.

On error, it returns 0.

> An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2 File specified by DBF_fd does not exist.

4 File specified by DBF_fd is not a DBF file.

7 Invalid file handle.

8 File not opened.

10 Not enough free block.

13 The value of key_number is invalid.

14 IDX file specified by key_number does not exist.

create_index, rebuild_index

157

CipherLab C Programming Part |

tell_DBF
Purpose To get the current index pointer position of an IDX file.
Syntax S32 tell_DBF (S32 DBF_fd, S32 key_number);
Parameters S32 DBF_fd
File handle of the target DBF file.
S32 key_number
Key number of the target IDX file.
Example rank_number = tell_DBF(DBF_fd, 1);
Return Value If successful, it returns the rank number for the current index pointer.
On error, it returns -1.
> An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.
Error Code Meaning
2 File specified by DBF_fd does not exist.
4 File specified by DBF_fd is not a DBF file.
7 Invalid file handle.
8 File not opened.
13 The value of key_number is invalid.
14 IDX file specified by key _number does not exist.
Remarks This routine gets the current index pointer position of an IDX file

(key_number), which is associated with a DBF file (DBF_fd).

» The index pointer position is expressed in rank number in the IDX file. For
example, if the index pointer points to the first index, its position will be 1L.

See Also Iseek_DBF

158

Chapter 2 Mobile-Specific Function Library

update_member

Purpose To update a data record (member) of a DBF file.
Syntax S32 update_member (S32 DBF_fd, S32 key_number, S8 *member);
Parameters S32 DBF_fd

File handle of the target DBF file.
S32 key_number
Key number of the target IDX file.
S8 *member
Pointer to a buffer where data to be updated is stored.
Example update_member(DBF_fd, 1, 10);
Return Value If successful, it returns 1.
On error, it returns 0.

» An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning
2 File specified by DBF_fd does not exist.
4 File specified by DBF_fd is not a DBF file.
7 Invalid file handle.
8 File not opened.
13 The value of key_number is invalid.
14 IDX file specified by key_number does not exist.
16 No members exist in the DBF file.
Remarks This routine updates a data record (member) pointed to by the index pointer of

an IDX file (key_number), which is associated with a DBF file (DBF_fd).
Although a data record is updated, the sequence in the index file will not
change. Users have to call rebuild_index() manually to update the sequence in
each index of the DBF file.

See Also has_member

159

CipherLab C Programming Part |

2.14.7 FILE TRANSFER VIA SD CARD

RAMtoSD_DAT

Purpose To copy a DAT file from file system (SRAM) to SD card.

Syntax S32 RAMtoSD_DAT (const S8 *filenameRAM, const S8 *filenameSD, S32
mode);

Parameters const S8 *filenameRAM

Pointer to a buffer where the source DAT file name is stored.

> The filename must be given in full path. Refer to 2.14.2 Disk Name and
Directory on how to specify a file path.

> The Disk letter can be omitted.
const S8 *filenameSD
Pointer to a buffer where the target DAT file name is stored.

» The filename must be given in full path. Refer to 2.14.2 Disk Name and
Directory on how to specify a file path.

) The Disk letter can be omitted.
S32 mode
(¢} To remove the source file.

1 To keep the source file.

Example const static S8 SrcDAT[1= “C:\\datal”;

const static S8 TarDAT[]= “A:\\XACT\\datal.dat™;

printf(“Copy the file to SD card...”);
Fremove(TarDAT); //remove target if it exists
iF(1(i=RAMtoSD_DAT((void*) SrcDAT, (void*) TarDAT, 0)))
{
printf(“\r\n Fail! ErrorCode=%d\r”, read_error_code());
while(1);
}

printf(“Done! File %s on SD card is created\r\n”, TarDAT);

Return Value If successful, it returns 1.

On error, it returns 0. The global variable fErrorCode is set to indicate the error
condition encountered. You may call read_error_code to get the error code.

160

Chapter 2 Mobile-Specific Function Library

Error Code Meaning
1 Invalid source/target file name.
2 Source file does not exist.
4 Source file is not a DAT file.
5 Source file is already opened.
10 Not enough free space on SD card
32 Cannot create target file. Read ferrno for more
information.
33 Cannot write data to target file on SD card. Read
ferrno for more information
Remarks The source DAT file must be closed before calling this routine. If the target file
already exists, it will be overwritten; otherwise, this routine will create a new
DAT file.
See Also SDtoRAM_DAT, SDtoRAM_DBF, RAMtoSD_DBF

161

CipherLab C Programming Part |

SDtoRAM_DAT

Purpose To copy a DAT file from SD card to file system (SRAM).

Syntax S32 SDtoRAM_DAT (const S8 *filenameSD, const S8 *filenameRAM, S32
mode);

Parameters const S8 *filenameSD

Pointer to a buffer where the source DAT file name is stored.

» The filename must be given in full path. Refer to 2.14.2 Disk Name and
Directory on how to specify a file path.

> The Disk letter can be omitted.
const S8 *filenameRAM
Pointer to a buffer where the target DAT file name is stored.

> The filename must be given in full path. Refer to 2.14.2 Disk Name and
Directory on how to specify a file path.

) The Disk letter can be omitted.

S32 mode
(¢} To remove the source file.

1 To keep the source file.

Example const static S8 SrcDAT [1= “A:\\XACT\\data2.dat”;

const static S8 TarDAT []= “C:\\data2”;

printf(“Copy the file to RAM...");

remove(TarDAT); //remove target if it exists

i (1 (i=SDtoRAM_DAT((void*) SrcDAT, (void*) TarDAT, 1)))

{
printfF(*\r\n Fail! ErrorCode=%d”, read_error_code());
while(1);

}

printf(“Done! File %s in RAM is created\r\n”, TarDAT);

Return Value If successful, it returns 1.

On error, it returns 0. The global variable fErrorCode is set to indicate the error
condition encountered. You may call read_error_code to get the error code.

Error Code Meaning

1 Invalid source/target file name.

6 Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

10 Not enough space.

31 Fail to open file on SD card. Read ferrno for more
information.

162

Chapter 2 Mobile-Specific Function Library

Remarks The source DAT file must be closed before calling this routine. If the target file
already exists, it will be overwritten; otherwise, this routine will create a new
DAT file.

See Also RAMtoSD_DAT, SDtoRAM_DBF, RAMtoSD_DBF

163

CipherLab C Programming Part |

RAMtoSD_DBF

Purpose To copy a DBF file and its associated IDX files from file system (SRAM) to SD
card.

Syntax S32 RAMtoSD_DBF (const S8 *filenameRAM, const S8 *filenameSD, S32
mode);

Parameters const S8 *filenameRAM

Pointer to a buffer where the source DBF file name is stored.

> The filename must be given in full path. Refer to 2.14.2 Disk Name and
Directory on how to specify a file path.

» The Disk letter can be omitted

» Filename extension isn’t required. When creating DBF files, it has “.DB0”
as the filename extension for the DBF file itself and “.DB1” ~ “.DB8” for
the IDX files.

const S8 *filenameSD
Pointer to a buffer where the target DBF file name is stored.

> The filename must be given in full path. Refer to 2.14.2 Disk Name and
Directory on how to specify a file path.

» The Disk letter can be omitted

> Filename extension isn’t required. When creating DBF files, it has “.DB0”
as the filename extension for the DBF file itself and “.DB1” ~ “.DB8” for
the IDX files.

S32 mode
(¢} To remove the source file.

1 To keep the source file.
Example const static S8 dbfname2[]= “C:\\RAMdbf1”;
const static S8 dbfname3[]= “A:\\Database\\SDdbf2”;
printf(“Copy the file to SD card...”);
remove(dbfname3d); //remove target if it exists
if(1(i=RAMtoSD_DBF((void*) dbfname2, (void*)dbfname3, 0)))
{
printf(“\r\n Fail! ErrorCode=%d\r”, read_error_code());
while(1);
}

printf(“Done! File %s on SD card is created\r\n”, dbfname3);

164

Return Value

Remarks

See Also

Chapter 2 Mobile-Specific Function Library

If successful, it returns 1.

On error, it returns 0. The global variable fErrorCode is set to indicate the error
condition encountered. You may call read_error_code to get the error code.

Error Code

1
4
5
6

10
11

Meaning

Invalid source/target file name.
Source file is not a DBF file.
Source file is already opened.

Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

Not enough space.

Source file doesn’t exist.

The source DBF file must be closed before calling this routine. If the target file
already exists, it will be overwritten; otherwise, this routine will create a new

DBF file.

The source DBF file must have at least one IDX file.

RAMtoSD_DAT, SDtoRAM_DAT, SDtoRAM_DBF

165

CipherLab C Programming Part |

SDtoRAM_DBF

Purpose To copy a DBF file and its associated IDX files from SD card to file system
(SRAM).

Syntax S32 SDtoRAM_DBF (const S8 *filenameSD, const S8 *filenameRAM, S32
mode);

Parameters const S8 *filenameSD

Pointer to a buffer where the source DBF file name is stored.

> The filename must be given in full path. Refer to 2.14.2 Disk Name and
Directory on how to specify a file path.

» The Disk letter can be omitted

» Filename extension isn’t required. When creating DBF files, it has “.DB0”
as the filename extension for the DBF file itself and “.DB1” ~ “.DB8” for
the IDX files.

const S8 *filenameRAM
Pointer to a buffer where the target DBF file name is stored.

> The filename must be given in full path. Refer to 2.14.2 Disk Name and
Directory on how to specify a file path.

» The Disk letter can be omitted

> Filename extension isn’t required. When creating DBF files, it has “.DB0”

as the filename extension for the DBF file itself and “.DB1” —~ “.DB8” for
the IDX files.
S32 mode
(0] To remove the source file.
1 To keep the source file.
Example const static S8 dbfnamel[]= *“A:\\SDdbf1”’;

const static S8 dbfname2[]= “C:\\RAMdbf1”;
printf(“Copy the file to RAM...");
remove(dbfname2); //remove target if it exists
if(1(i=SDtoRAM_DBF((void*)dbfnamel, (void*) dbfname2, 1)))
{
printf(“\r\n Fail! ErrorCode=%d”, read_error_code());
while(1);
}

printf(““Done! File %s in RAM is created\r\n”, dbfname2);

166

Return Value

Remarks

See Also

Chapter 2 Mobile-Specific Function Library

If successful, it returns 1.

On error, it returns 0. The global variable fErrorCode is set to indicate the error
condition encountered. You may call read_error_code to get the error code.

Error Code

1
4
5
6

10

Meaning

Invalid source/target file name.
Source file is not a DBF file.
Source file is already opened.

Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

Not enough space.

The source DBF file must be closed before calling this routine. If the target file
already exists, it will be overwritten; otherwise, this routine will create a new

DBF file.

RAMtoSD_DAT, RAMtoSD_DBF, SDtoRAM_DAT

167

CipherLab C Programming Part |

2.14.8 GET FILE INFORMATION

GetFilelnfo
Purpose To get file information from file system (SRAM) or SD card.
Syntax S32 GetFileInfo (const S8 *filename, DEVICE_FILEINFO *InfoBuf);
Parameters const S8 *filename
Pointer to a buffer where the file name of the target file is stored.
> The file name must be given in full path and cannot exceed 250 bytes.
Refer to 2.14.2 Disk Name and Directory on how to specify a file path.
> If the Disk letter is not given, RAM Disk will be specified by default.
DEVICE_FILEINFO *InfoBuf
Pointer to DEVICE_FILEINFO structure.
Example DEVICE_FILEINFO InfoBuf;

U3z i;

if (GetFilelnfo("a:\\DBF1.DBO",&InfoBuf) ==1){
printf ("FileType=%d \r\n", InfoBuf.file_type);
printf ('FileOpen=%d \r\n", InfoBuf.open_status);
printf ("FileSize=%d \r\n", InfoBuf.fileSize);
printf ("total_member=%d \r\n", InfoBuf.total_member);
printf (“"Member_len=%d \r\n", InfoBuf.Member_len);
printf('IndexNumber:%d \r\n", InfoBuf.IndexNumber);
//show each index file (1~-8) information
Ffor(i=0;i<8;i++){
printf ("key%d len=%d\r\n", i, InfoBuf.index[i].-key len);
printf ("offset=%d\r\n', InfoBuf.index[i]-key offset);
printf ("sz=%d\r\n", InfoBuf.index[i].-index_Ffile_size);
}
}

else{

printfF(""No file\r\n”);

168

Chapter 2 Mobile-Specific Function Library

Return Value If successful, it returns 1.
If file does not exist, it returns 0.
If file name or buffer pointer is null. It returns -1.

See Also fgetinfo

2.14.9 DEVICE_FILEINFO STRUCTURE

Use GetFilelnfo () to access the file or directory information.

typedef struct {

U8 file_type;

U8 open_status;

U32 fileSize;

U32 total_member;

U1l6 Member_len;

U8 IndexNumber;

struct index_ INFO index[8];
} DEVICE_FILEINFO;

struct index_INFO {
Ul6 key len;
U16 key_ offset;
U32 index_file_size;

»

169

CipherLab C Programming Part |

Member Description Valid for File
File_type File types: All
1 DAT
2 DBF
3 INDEX
Open-status Open status: All
1 Open
0 Close
filesize File size in bytes. All

total_member
Member_len
IndexNumber

index[0].key_len

index[0].key_ offset

index[0].index _file_size

index[1].key_len
index[1].key_offset
index[1].index _file_size
index[2].key_len
index[2].key_offset
index[2].index_file_size
index[3].key_len
index[3].key_offset
index[3].index_file_size
index[4].key_len
index[4].key_offset
index[4].index_file_size
index[5].key_len
index[5].key_offset
index[5].index_file_size
index[6].key_len
index[6].key_offset

170

Total number of record in DBF member file
Member length defined in create_DBF
Number of created index file

Key length of the index file 1

*Key length of the index file

Key offset of the index file 1

*Key offset of the index file

File size of the index file 1

*File size of the index file will be the same as

fileSize

Key length of the index file 2
Key offset of the index file 2
File size of the index file 2
Key length of the index file 3
Key offset of the index file 3
File size of the index file 3
Key length of the index file 4
Key offset of the index file 4
File size of the index file 4
Key length of the index file 5
Key offset of the index file 5
File size of the index file 5
Key length of the index file 6
Key offset of the index file 6
File size of the index file 6
Key length of the index file 7
Key offset of the index file 7

DBF Record file
DBF Record file
DBF Record file
DBF Record file
*Index file

DBF Record file
*Index file

DBF Record file

*Index file

DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file
DBF Record file

index[6].index_file_size
index[7].key_len
index[7].key_offset

index[7].index _file_size

Chapter 2

File size of the index file 7
Key length of the index file 8
Key offset of the index file 8

File size of the index file 8

Mobile-Specific Function Library

DBF Record file
DBF Record file
DBF Record file
DBF Record file

171

CipherLab C Programming Part |

Filename & Location Type

Provided Information

Files in the RAM DAT

File name without/with DBF
prefix

“C:\\7, “c:\\”7, “C:/”, or “c:/”

e.g. DATA1
C:\\DATA1
C:/DATA1.DBO
C:/DATA1.DB1

Files in SD card DAT

File name with prefix
“A\\, “a:\\”, “A:/” or “a:/” DBF

e.g.
a:/DATA1.DBO
a:/DATA1.DB1

172

file_type
open_status
fileSize

(DBF Record file: DBO)

file_type

open_status

fileSize

total_member

Member_len

IndexNumber

index[0]—~index[7] (key_len, key offset, index_file_size)
(*Index file: DB1~DB8)

file_type

open_status

fileSize

index[0] (key_len, key_offset, index_file_size)
file_type

open_status

fileSize

(DBF Record file: DBO)

file_type

open_status

fileSize

total_member

Member_len

IndexNumber

index[0]~index[7] (key_len, key_ offset, index_file_size)
(*Index file: DB1~DB8)

file_type
open_status
fileSize

index[0] (key_len, key_offset, index_file_size)

Chapter 2 Mobile-Specific Function Library

Note:

DBF Record file: DBO
e.g. File name = A:/DATA1.DBO

Get the information of member file. All its keys are stored in index[0]~index[7].
*Index file: DB1—~DB8
e.g. File name = A:/DATA1.DB1

A:/DATA1.DB2

A:/DATA1.DB8

Only get the information of this Index file. Key length and offset are stored in index[0].

173

CipherLab C Programming Part |

2.14.10 MASS STORAGE DEVICE

When mass storage is in use, (1) all opened files will be closed automatically and (2) if
any of the functions in 2.14.5 FAT File Manipulation is called before close_com(5), the
error code E_SD_OCCUPIED is returned to indicate the SD card is currently occupied as
mass storage device.

GetMassStorageStatus

Purpose To get the status when mass storage is in use.
Syntax U8 GetMassStorageStatus (void);

Example U8 status;

Return Value

Remarks

See Also

174

status = GetMassStorageStatus();
if (status&0Ox1){
printf(*“USB is connected”);

}

else {
printf(“USB is disconnected™);
}

An integer is returned, summing up values of each item, to indicate the current
status.

Each bit indicates a certain item as shown below.
Bit = Return Value
(0] 0: USB is disconnected
1: USB is connected
1 0: Device is not being accessed
1: Device is being accessed

SetCommType

Chapter 2 Mobile-Specific Function Library

2.14.11 FILE MANIPULATION ROUTINES COMPATIBLE WITH OLDER PROGRAMS

To ease the burden of adapting programs for conventional 8 series to new ones for 8600,
this section details the functions copmatible with conventional file manipulation routines.
Actually, those functions are designed to call routines described in 2.14.5 FAT File
Manipulation. When a function error occurs, the error codes it mostly refers to are ferrno
instead of fErrorCode.

Below are the routines applicable to both types of files, DAT and DBF files (with
associated IDX files).

access

Purpose To check whether a file exists or not.

Syntax S32 access (const S8 *filename);

Parameters const S8 *filename
Pointer to a buffer where the filename of the file to be checked is stored.
> The file name must be given in full path and cannot exceed 250 bytes.

Refer to 2.14.2 Disk Name and Directory on how to specify a file path.

> If the Disk letter is not given, RAM Disk will be specified by default.
> If the target file is a DBF, specify “.DB0” as the file extension.

Example if (access(“C:\\datal)) puts(‘“datal exist!\n”);

Return Value If file exists, it returns 1.

If file does not exist, it returns 0.
On error, it returns -1.

» An error code is set to the global variable fErrorCode and ferrno to indicate
the error condition encountered.

get_file_number

Purpose To get the total number of a specific file type.
Syntax S32 get_file_number (S32 type);
Parameters S32 type
(0] Get the number of total files.
1 Get the number of DAT files.
2 Get the number of DBF files.
3 Get the number of Index files.
Example total _DAT_file = get_file_number(l);
Return Value It simply returns the number of files.
Remarks This function can only get the file number in the root directory of RAM Disk.

Those in multi-direcories and SD card are not supported.

175

CipherLab C Programming Part |

remove
Purpose To delete a file.

Syntax S32 remove (const S8 *filename);
Parameters const S8 *filename

Pointer to a buffer where the filename of the file to be deleted is stored.

> The file name must be given in full path and cannot exceed 250 bytes.
Refer to 2.14.2 Disk Name and Directory on how to specify a file path.

> If the Disk letter is not given, RAM Disk will be specified by default.
> If the target file is a DBF, specify “.DB0” as the file extension.

> If the file to be deleted is a DBF file, the DBF file and all the index (key)
files associated to it will be deleted together.

Example if (remove(“C:\\datal.DB0”)) puts(“DBF and IDX files datal are
deleted!\n”);

Return Value If successful, it returns 1.
On error, it returns 0.

» An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

rename
Purpose To change the file name of an existing file.
Syntax S32 rename (const S8 *old_filename, const S8 *new_filename);
Parameters const S8 *old_filename
Pointer to a buffer where the original filename is stored.
const S8 *new_filename
Pointer to a buffer where the new filename is stored.
» The file name must be given in full path and cannot exceed 250 bytes.
Refer to 2.14.2 Disk Name and Directory on how to specify a file path.
> If the Disk letter is not given, RAM Disk will be specified by default
If the target file is a DBF, specify “.DB0” as the file extension.
If the file specified by old_filename is a DBF file, the file name of the DBF
file and all the index (key) files associated to it will be changed to
new_filename together.
» The renamed file must be in the same disk where the original one was
located.
Example if (rename(“C:\\datal”, “C:\\textl”)) puts(“datal is renamed!\n”);
Return Value If successful, it returns 1.

On error, it returns 0.

» An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

176

Chapter 2 Mobile-Specific Function Library

DAT files have a sequential file structure. Below are routines applicable to DAT files.

» The append() and appendin() functions can write data to the EOF (end of file)
position, no matter where the file pointer points to. That is, the file pointer position is
not changed after calling these functions.

Normally, the scheme for handling the transaction data is reading and removing data
from top of the file, and adding new data to the bottom of a file.

append

Purpose To write a specified number of bytes to the bottom (EOF) of a DAT file.
Syntax S32 append (S32 fd, S8 *buffer, S32 count);

Parameters S32 fd

File handle of the target DAT file.

S8 *buffer

Pointer to a buffer where data is stored.

S32 count

Number of bytes to be written.

» The maximum number of characters that can be written is 32767.

Example append(fd, “1234567890, 10);
Return Value If successful, it returns the number of bytes actually written to the file.
On error, it returns -1.
» The global variable ferrno is set to indicate the error condition encountered.
Remarks This routine writes a number of bytes (count) from the character array buffer
to the bottom of a DAT file (fd).

» Writing of data starts at the end-of-file position, and the file pointer
position is unaffected by the operation. It will automatically extend the file
size to hold the data written.

See Also appendlin, read, readln, write, writeln

177

CipherLab C Programming Part |

appendin
Purpose To write a line (null-terminated string) to the bottom (EOF) of a DAT file.
Syntax S32 appendln (S32 fd, S8 *buffer);
Parameters S32 fd
File handle of the target DAT file.
S8 *buffer
Pointer to a buffer where data is stored.
Example appendIn(fd, data_buffer);

Return Value

If successful, it returns the number of bytes actually written to the file,
including the null character.

On error, it returns -1.

The global variable ferrno is set to indicate the error condition encountered.

Remarks This routine writes a null-terminated string from the character array buffer to
the bottom of a DAT file (fd).

» Characters are written to the file until a null character (\O) is encountered.
The null character is also written to the file.

» Writing of data starts at the end-of-file position, and the file pointer
position is unaffected by the operation. It will automatically extend the file
size to hold the data written.

See Also append, read, readln, write, writeln
chsize

Purpose To truncate a DAT file.

Syntax S32 chsize (S32 fd, S32 size);
Parameters S32 fd

File handle of the target DAT file.

S32 size

New size of the file, in bytes.

Example if (chsize(fd, OL)) puts(“file is truncated!\n”);

Return Value

Remarks

178

If successful, it returns 1.
On error, it returns 0.
The global variable ferrno is set to indicate the error condition encountered.

This routine truncates a DAT file (fd) to match the new file length in bytes
given in the argument size. All data beyond the new file size will be lost.

Chapter 2 Mobile-Specific Function Library

close
Purpose To close a previously opened or created DAT file.
Syntax S32 close (S32 fd);
Parameters S32 fd
File handle of the target DAT file.
Example if (close(fd)) puts(“file is closed!\n”);

Return Value

If successful, it returns 1.
On error, it returns 0.

The global variable ferrno is set to indicate the error condition encountered.

See Also open

eof

Purpose To check whether or not the file pointer of a DAT file reaches the end-of-file
(eof) position.

Syntax S32 eof (832 fd);

Parameters S32 fd
File handle of the target DAT file.

Example if (eof(fd)) puts(“end of file is reached!\n”);

Return Value

If EOF is reached, it returns 1.
If EOF is not reached, it returns O.
On error, it returns -1.

The global variable ferrno is set to indicate the error condition encountered.

filelength
Purpose To get the size information (in bytes) of a DAT file.
Syntax S32 filelength (S32 fd);
Parameters S32 fd
File handle of the target DAT file.
Example data_size = Ffilelength(fd);

Return Value

If successful, it returns the number of bytes for file size.
On error, it returns -1.

The global variable ferrno is set to indicate the error condition encountered.

179

CipherLab C Programming Part |

Iseek
Purpose To reposition the file pointer of a DAT file.
Syntax S32 Iseek (S32 fd, S32 offset, S32 origin);
Parameters S32 fd
File handle of the target DAT file.
S32 offset
Offset of new position (in bytes) from origin.
S32 origin
1 Offset from the beginning of the file.
(0] Offset from the current position of the file pointer.
-1 Offset from the end of the file.
Example Iseek(fd, 512L, 0); // skip 512 bytes

Return Value

If successful, it returns the number of bytes of offset.
On error, it returns -1L.

The global variable ferrno is set to indicate the error condition encountered.

Remarks This routine repositions the file pointer of a DAT file (fd) by seeking a number
of bytes (offset) from the given position (origin).
See Also tell
open
Purpose To open a DAT file and get its file handle for further processing.
Syntax S32 open (const S8 *filename);
Parameters const S8 *filename
Pointer to a buffer where the filename of the file to be opened is stored.
» The file must be given in full path without exceeding 250 bytes. Refer to
2.14.2 Disk Name and Directory on how to specify a file path.
> If the Disk letter is not given, RAM Disk will be specified by default.
> If the file specified by filename does not exist, it will be created first.
Example if (fd = open(“datal™) > 0) puts(‘“data 1 is opened!\n”);

Return Value

Remarks

See Also

180

If successful, it returns the file handle.
On error, it returns -1.
» The global variable ferrno is set to indicate the error condition encountered.

A file handle is a positive integer (greater than zero) used to identify the file for
subsequent file manipulation on the file.

Once the file is opened, the file pointer is at the beginning of the file.

close

Chapter 2 Mobile-Specific Function Library

read
Purpose To read a specified number of bytes from a DAT file.
Syntax S32 read (S32 fd, S8 *buffer, S32 count);
Parameters S32 fd
File handle of the target DAT file.
S8 *buffer
Pointer to a buffer where data is stored.
S32 count
Number of bytes to be read.
Example if ((byte_read = read(fd, buffer, 80)) == -1) puts(“read error!\n”);

Return Value If successful, it returns the number of bytes actually read from the file.

On error, it returns -1.
The global variable ferrno is set to indicate the error condition encountered.

This routine reads a number of bytes (count) from a DAT file (fd) to the

Remarks
character array buffer.
» Reading of data starts from the current position of the file pointer, which is
incremented accordingly when the operation is completed.
See Also readln, write, writeln

181

CipherLab C Programming Part |

readln
Purpose To read a line (null-terminated string) from a DAT file.
Syntax S32 readln (832 fd, S8 *buffer, S32 max_count);
Parameters S32 fd

File handle of the target DAT file.

S8 *buffer

Pointer to a buffer where data is stored.

S32 max_count

Maximum number of bytes to be read.

> Usually set to a value which equals the size of the buffer to avoid
overflow.

Example readIn(fd, buffer, 80);

Return Value

If successful, it returns the number of bytes actually read from the file.
On error, it returns -1.
The global variable ferrno is set to indicate the error condition encountered.

This routine reads a null-terminated string from a DAT file (fd) to the character
array buffer. Characters are read until end-of-file or a null character (\O) is
encountered, or the total number of character read equals the number
specified by max_count.

Remarks » If characters are read until a null character (\O) is encountered, the null
character is also read into buffer. That is, it is also counted for the return
value. Otherwise, there may not be a null character stored in buffer.

» Reading of data starts from the current position of the file pointer, which is
incremented accordingly when the operation is completed.

See Also read, write, writeln

tell

Purpose To get the current file pointer position of a DAT file.

Syntax S32 tell (S32 fd);

Parameters S32 fd

File handle of the target DAT file.

Example current_position = tell(fd);

Return Value

Remarks

See Also

182

If successful, it returns the number of bytes for the offset from the beginning of
the file to the current file pointer.

On error, it returns -1.
» The global variable ferrno is set to indicate the error condition encountered.

The file pointer position is expressed in number of bytes from the beginning of
file.

» For example, if the file pointer is at the beginning of the file, its position is
0.

Iseek

Chapter 2 Mobile-Specific Function Library

write

Purpose To write a specified number of bytes to a DAT file.
Syntax S32 write (S32 fd, S8 *buffer, S32 count);
Parameters S32 fd
File handle of the target DAT file.
S8 *buffer
Pointer to a buffer where data is stored.
S32 count
Number of bytes to be written.
Example write(fd, data_buffer, 1024);
Return Value If successful, it returns the number of bytes actually written to the file.
On error, it returns -1.
The global variable ferrno is set to indicate the error condition encountered.

Remarks This routine writes a number of bytes (count) from the character array buffer
to a DAT file (fd).

» Writing of data starts at the current position of the file pointer, which is
incremented accordingly when the operation is completed.

» If end-of-file is encountered during operation, it will automatically extend
the file size to hold the data written.

See Also append, appendln, read, readIn, writeln

183

CipherLab C Programming Part |

writeln
Purpose To write a line (null-terminated string) to a DAT file.
Syntax S32 writeln (S32 fd, S8 *buffer);
Parameters S32 fd
File handle of the target DAT file.
S8 *buffer
Pointer to a buffer where data is stored.
Example writeln(fd, data_buffer);

Return Value

Remarks

See Also

184

If successful, it returns the number of bytes actually written to the file,
including the null character.

On error, it returns -1.
The global variable ferrno is set to indicate the error condition encountered.

This routine writes a null-terminated string from the character array buffer to a
DAT file (fd).

» Characters are written to the file until a null character (\O) is encountered.
The null character is also written to the file.

» Writing of data starts at the current position of the file pointer, which is
incremented accordingly when the operation is completed.

» If end-of-file is encountered during operation, it will automatically extend
the file size to hold the data written.

append, appendin, read, readin, write

Chapter 2 Mobile-Specific Function Library

2.14.12 ERROR CODE

For most SD-related functions, the global variable ferrno is set to indicate the error
condition encountered. For example,

fd = fopen(“C:\\Ffilel”, “rb”);
if(Ifd){

printf(“%d”,ferrno);
}

For information on the condition encountered, refer to the Error Code list in ferror().
Alternatively, you may call ferror() to access the error code after performing read/write
operation to a file.

Using ferrno

fwrite (X, X, X, fdl);
errorl = ferrno
fwrite (X, X, X, fd2);

error2 = ferrno

After executing a file function, the global variable ferrno will be updated accordingly. Therefore,
in the example above errorl and error2 may be different.

Using ferror()

fwrite (X, X, X, fdl);
errorl = ferror (fdl);
fwrite (X, X, X, fd2);
ferror (fd2);

errorl = ferror (fdl);

error2

After executing a function related to read/write operation to a file, the value you get by calling
ferror() is the same as the one ferrno holds. The only difference is the value returned by
ferror() will not be updated until executing a function related to read/write operation to the
same file. Therefore, in the example above the first errorl and the second errorl are exactly the
same.

clearerr

Purpose To reset the error code of a file.
Syntax void clearerr (832 fd) ;
Parameters S32 fd

File handle of the target file.

185

CipherLab C Programming Part |

Example

Return Value

Remarks

186

S32 fd;

fd = fopen (“A:\\myfile._bin”, “wb™);
if(fgetc(fd)==-1){

printf(“error code:%d”,ferror(fd));
clearerr(fd);

}

None

This routine sets the error code to zero.

Chapter 2 Mobile-Specific Function Library

ferror

Purpose To check whether or not an error has occurred during a previous read/write
operation on a file.

Syntax S32 ferror (S32 fd) ;

Parameters S32 fd
File handle of the target file.

Example S32 fd;

Return Value

Remarks

fd = fopen (“C:\\myfile._bin”, “wb™);

i f(fgetc(Fd)==-1){

printf(“error code:%d”,ferror(fd));

}

If any error occurred, it returns the error code.

Otherwise, it returns O.
Error Code
E_SD_NOT_READY(1)
E_NO_FILESYSTEM(2)
E_NO_OBJECT(3)
E_NO_PATH(4)
E_NOT_DIR(5)
E_NOT_FILE(6)
E_DIR_NOT_EMPTY(7)
E_INVALID_NAME(8)
E_INVALID_OBJECT(9)
E_READ_ONLY(10)

E_ACCESS_DENIED(11)

E_OBJECT EXIST(12)
E_DISK_FULL(13)
E_RW_ERROR(14)

E_INVALID_HANDLE(15)
E_NO_AVAILABLE_HANDLE(16)

E_INVALID_MODE(17)
E_SD_OCCUPIED(18)

Meaning

SD is not ready

Unsupported File System
Can’t find object

Can’t find path

Not a directory

Not a file

Directory is not empty

Invalid Name

Object is not properly opened
Object’s attribute is read-only
Access doesn’t match open method
Object already exists

Disk is full

Sector read/write error
Invalid Handle

Unavailable Handle

Invalid mode character

SD is being used by USB Mass Storage

You may call ferror() to access the error code for fgetc(), fgets(), fputc(),
fputs(), fread() and fwrite().

187

CipherLab C Programming Part |

For DBF file routines and some legacy functions, a system variable “fErrorCode” is used
to indicate the result of the last file operation.

» A value other than zero indicates error. The error code can be accessed by calling
read_error_code().

read_error_code

Purpose To get the value of the global variable fErrorCode.

Syntax S32 read_error_code (void);

Example if (read_error_code() == 2) puts(“File not exist!\n”);

Return Value It returns the value of the global variable fErrorCode.

Remarks This routine gets the value of the global variable fErrorCode and returns the

value to the calling program. You may call this function to get the error code of
the previously called routine for file manipulation. Yet, the global variable
fErrorCode can be directly accessed without making a call to this routine.

Functions and applicable corresponding error codes:

Error Code
ferrno fErrorCode

Function

Functions in 2.14.5 FAT File Manipulation 2\

Functions in 2.14.6 DBF Files and IDX Files v
Functions in 2.14.7 File Transfer via SD Card |V v

access 4 %
remove v v
rename v v
Functions in 2.14.11 File Manipulation Vv

Routines Compatible with Older Programs

188

Chapter 3
STANDARD LIBRARY ROUTINES

The standard library routines supported are categorized and listed below.

Input & Output: <stdio.h>

» File Operations: Not supported. Please use CipherLab Library routines.

» Formatted Output: Only sprintf is supported.
For formatted output to display, refer to CipherLab Library
“LCD”.

> Formatted Input: Only sscanf is supported.

» Character Input and Output: Not supported. Refer to CipherLab Library “Keypad”.
» Direct Input and Output: Not supported.

Input & Output: <stdio.h>

For each function, the argument is a character, whose value must be EOF or representable as an
unsigned char, and the return value is an integer.

The functions return non-zero (true) if the argument c satisfies the condition described;
otherwise, zero is returned.

> isalnum (c) isalpha (c) or isdigit (¢) is true

> isalpha (c) isupper (c) or islower (c) is true

> iscntrl (c) control character

> isdigit (c) decimal digit

> isgraph (c) printing character except space

> islower (c) lower-case letter

> isprint (c) printing character including space

» ispunct (c) printing character except space, letter and digit
> isspace (c) space, formfeed, newline, carriage return, tab, vertical tab
> isupper (c) upper-case letter

> isxdigit (c) hexadecimal digit

In addition, there are two functions that convert the case of letters:
» int tolower (c) convert c to lower-case

> int toupper (c) convert ¢ to upper-case

189

CipherLab C Programming Part |

String Functions: <string.h>, Functions start with “str”

In this list, types of variables are as follows.

char *s;

const char *cs, ct;

size_t n;

int c;

» char *strcpy (s, ct)

» char *strncpy (s, ct, n)
» char *strcat (s, ct)

» char *strncat (s, ct, n)
» int strcmp (cs, ct)

> int strncmp (cs, ct, n)
» char *strchr (cs, c)

» char *strrchr (cs, c)

) size t strspn (cs, ct)

) size t strcspn (cs, ct)
» char *strpbrk (cs, ct)
» char *strstr (cs, ct)

> size_t strlen (cs)

» char *strtok (s, ct)

> strcoll

» strerror

190

copy string ct to string s, including 0x00, return s

copy at most n characters of string ct to s, return s, pad with
0x00s if ct has fewer than n characters

concatenate string ct to end of string s, return s
concatenate at most n characters of ct to s, return s

compare string cs with ct, return valus < 0 if cs < ct; return =
Oifcs =ct; return >0 if cs > ct

compare at most n characters of string cs with ct, return valus
< 0ifcs < ct; return = 0 if cs = ct; return > 0 if cs > ct

return pointer to first occurrence of ¢ in cs or NULL if not
present

return pointer to last occurrence of ¢ in c¢s or NULL if not
present

return length of prefix of cs consisting of characters in ct
return length of prefix of cs consisting of characters not in ct

return pointer to first occurrence in string cs of any character of
string ct, or NULL if none is present

return pointer to first occurrence of string ct in cs, or NULL if
not present

return length of string cs

search s for tokens delimited by characters from ct
Not supported.

Not supported.

Chapter 3 Standard Library Routines

String Functions: <string.h>, Functions start with “mem”

In this list, types of variables are as follows.

void *s;

const void *cs, *ct;
size_t n;

int c;

> void *memcpy (s, ct, n)

» void *memmove (s, ct, n)

» int memcmp (cs, ct, n)

» wvoid *memchr (cs, c, n)

» void *memset (s, c, n)

copy n characters from ct to s, return s

same as memcpy except that it works fine even if objects
overlap

compare first n characters of cs with ct, return as strcmp

return pointer to first occurrence of character c in cs or NULL if
not present among first n characters

place character c into first n characters of s, return s

191

CipherLab C Programming Part |

Mathematical Functions: <math.h>

Mathematical functions are listed below. All of them return a value of double.

In this list, types of variables are as follows.

double x, y;

int n;

»

Vv VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV v v v

sin (x)

cos (X)

tan (X)

asin (x)
acos (x)
atan (x)
atan2 (y, x)
sinh (xX)
cosh (x)
tanh (x)
exp (X)

log (X)
log10 (x)
pow (X, Y)
sqgrt (x)

ceil (x)
floor (x)
fabs (x)
Idexp (X, n)

frexp (x, int *exp)

modf (X, double *ip)

fmod (X, y)

192

sine of x

cosine of x

tangent of x

arc sine of x, in the range [-n/2, n/2] radians, x € [-1, 1].
arc cosine of x, in the range [0,n] radians, x € [-1, 1].
arc tangent of x, in the range [-n/2, n/2] radians.

arc tangent of y/x, in the range [-n, n] radians.
hyperbolic sine of x

hyperbolic cosine of x

hyperbolic tangent of x

base e raised to the power of x

log(x), x>0

log to the base 10 of x, x >0

X raised to the power y

square root of x

the smallest integer no less than x

the largest integer not greater than x

absolute value of x

X multiplied by 2 raised to the power of n

decompose x into two parts: a mantissa between 0.5 and 1
(returned by the function) and an exponent returned as exp.

Scientific notation works like this: x = mantissa * (2 ™ exp)
If x = 0, both parts of the result are zero.

split x into its integer and fraction parts, each with the same
sign as x. Returns the fractional part and loads the integer part
into *ip.

the remainder of x/y, with the same sign as x.

If y = 0O, the result is implementation-defined.

Utility Functions: <stdlib.h>, Number Conversion

Chapter 3 Standard Library Routines

» double atof (const char *s)

> int atoi (const char *s)

» long atol (const char *s)

» double strtod (const char *s, char **endp)

» long strtol (const char *s, char **endp, int base)

v

unsigned long strtoul (const char *s, char
**endp, int base)

int rand (void)

void strand (unsigned int seed)
void *bsearch()

void gsort()

int abs (int n)

long labs (long n)

div_t div (int num, int denom)

v VvV VvV VvV VvV VvV v v

Idiv_t div (long num, long denom)

Utility Functions: <stdlib.h>, Storage Allocation

Convert s to double, equivalent to strtod
(s, (char **) NULL)

Convert s to integer, equivalent to strtol
(s, (char **) NULL, 10)

Convert s to long,

equivalent to strtol (s, (char **) NULL, 10)
Convert the prefix of s to double

Convert the prefix of s to long

Convert the prefix of s to unsigned long

Return a random integer from O to 32,767
seed for new pseudo-random generation
binary search

ascending sorts

integer absolute

long absolute

integer division

long division

Not supported. Use the CipherLab library routines instead.

193

CipherLab C Programming Part |

Diagnostics: <assert.h>

Not supported.

Variable Argument Lists: <stdarg.h>

Functions for processing variable arguments are listed below.
va_start (va_list ap, lastarg)
type va_arg (va_list ap, type)

void va_end (va_list ap)

Non-Local Jumps: <setjmp.h>

Not supported.

Signals: <signal.h>

Not supported.

Time & Date Functions: <time.h>

Not supported.

Implementation-defined Limits: <limits.h>, <float.h>

Refer to limit.h and float.h.

194

Chapter 4
REAL-TIME KERNEL

All the mobile computers come with a real-time kernel (uC/OS) that allows users to
generate a preemptive multi-tasking application. Users can apply the real-time kernel
functions to split the application into multiple tasks that each task takes turns to gain the
access to the system resource by a priority-based schedule.

HC/OS applies the semaphore mechanism to control the access to the shared resource
for the multiple tasks. Generally, there are only three operations that can be performed
on a semaphore: CREATE, PEND, and POST. A semaphore is a key that the task has to
require so that it can continue execution. If a semaphore is already in use, the requesting
task is suspended until the semaphore is released by its current owner.

A task is an infinite loop function or a function which deletes itself when it is done
executing. Each task is assigned with an appropriate priority. The more important the
task is, the higher the priority given to it. pC/OS can manage up to 23 tasks (with
priority set from O to 22, the lower number, the higher priority) for the user program.
The main task, main(), takes priority 12.

A task desiring the semaphore will perform a PEND operation. A task releases the
semaphore by performing a POST operation. If there are several tasks on the pending list,
the task with highest priority waiting for the semaphore will receive the semaphore when
the semaphore is posted. The pending list of tasks is always initially empty.

Semaphores are often overused. Disabling and enabling interrupts could do the job more
efficiently. All real-time kernels will disable interrupts during critical sections of code. You
are thus basically allowed to disable interrupts for as much time as the kernel does
without affecting interrupt latency.

» Include File
#include <ucos.h>

This header file, “ucos.h”, contains the function prototypes (declarations) and error
code definitions. This file should normally be placed under the “INCLUDE” directory of
the C compiler — GHOME..\INCLUDE\

The YC/0S related functions are discussed as follows.

195

CipherLab C Programming Part |

OS_ENTER_CRITICAL

Purpose
Syntax

Example

Return Value

Remarks

To disable the processor's interrupt.
void OS_ENTER_CRITICAL (void);
0S_ENTER_CRITICALQ;

/* user code */
0S_EXIT_CRITICALQ);

None

A critical section of code is code that needs to be treated indivisibly. Once the
section of code starts executing, it must not be interrupted. To ensure this,
users can call this routine to disable interrupts prior to executing the critical
code, and then enable the interrupts when the critical code is done. This
function executes in about 5 CPU clock cycles.

» OS_ENTER_CRITICAL and OS_EXIT_CRITICAL must be used in pairs.

OS_EXIT_CRITICAL

Purpose
Syntax

Example

Return Value

Remarks

196

To enable the processor's interrupt.

void OS_EXIT_CRITICAL (void);
0S_ENTER_CRITICALQ;

/* user code */

0S_EXIT_CRITICALQ);

None

This function executes in about 5 CPU clock cycles.

» OS_ENTER_CRITICAL and OS_EXIT_CRITICAL must be used in pairs.

Chapter 4 Real-Time Kernel

OSSemCreate
Purpose To create and initialize a semaphore.
Syntax OS_SEMAPHORE OSSemCreate (U16 value);
Parameters OS_EVENT, a data structure to maintain the state of an event called an Event
Control Block (ECB), is defined as below.
typedef struct os_event {
U8 OSEventGrp;
// Group corresponding to tasks waiting for event to occur
U8 OSEventTbl[8];
// List of tasks waiting for event to occur
Ul1l6 OSEventCnt;
// Count of used when event is a semaphore
void *OSEventPtr;
// Pointer to message or queue structure
} OS_EVENT;
typedef struct os_event *0OS_SEMAPHORE;
U16 value
The initial value of the semaphore, which is allowed to be between O and
32767.
Example DispSem = 0SSemCreate(1); // create Display semaphore

Return Value

Remarks

A pointer to the event control block allocated to the semaphore.
If no event control blocks are available, a NULL pointer will be returned.
This function creates and initializes a semaphore. A semaphore is used to:
» Allow a task to synchronize with either an ISR or a task.
P Gain exclusive access to a resource.
» Signal the occurrence of an event.

Note that semaphores must be created before they are used. This function
cannot be called from an ISR.

197

CipherLab C Programming Part |

OSSemPend
Purpose To list a task on the pending list for the semaphore.
Syntax void OSSemPend (OS_SEMAPHORE semaphore, U32 timeout, U8 *err);
Parameters OS_SEMAPHORE semaphore
Pointer to the semaphore. This pointer is returned to your application when
the semaphore is created.
U32 timeout
The maximum timeout can be 65535 clock ticks. It is used to allow the task to
resume execution if the semaphore is not acquired within the specified
number of clock ticks.
» A timeout value of O indicates that the task desires to wait forever for the
semaphore.
u8 *err
Pointer to a variable which will be sued to hold an error code.
OSSemPend sets *err to either:
» OS_NO_ERR, if the semaphore is available.
> OS_TIMEOUT, if a timeout occurred.
Example 0SSemPend(DispSem, 0, &err);

Return Value

Remarks

198

None

This function is used when a task desires to gain exclusive access to a
resource, to synchronize its activities with an Interrupt Service Routine (ISR),
or to wait until an event occurs.

If a task calls OSSemPend() and the value of the semaphore is greater than
zero, then OSSemPend() will decrement the semaphore count and return to its
caller. However, if the value of the semaphore is less than or equal to zero,
0OSSemPend() decrements the semaphore count and places the calling task in
the pending list for the semaphore. The task will thus wait until a task or an
ISR releases the semaphore or signals the occurrence of the event. In this
case, rescheduling occurs and the next highest priority task ready to run is
given control of the CPU. An optional timeout may be specified when pending
for a semaphore.

Note that semaphores must be created before they are used. This function
cannot be called from an ISR.

Chapter 4 Real-Time Kernel

OSSemPost

Purpose To signal the semaphore.

Syntax U8 OSSemPost (OS_SEMAPHORE semaphore);

Parameters OS_SEMAPHORE semaphore
Pointer to the semaphore. This pointer is returned to your application when
the semaphore is created.

Example err = 0SSemPost(DispSem);

Return Value

Remarks

If successful, it returns OS_NO_ERR to indicate the semaphore is available.
Otherwise, it returns OS_TIMEOUT to indicate timeout occurred.

A semaphore is signaled by calling OSSemPost(). If the value of a semaphore
is greater than or equal to zero, the semaphore count is incremented and
OSSemPost() returns to its caller.

If the semaphore count is less than zero, then tasks are waiting for the
semaphore to be signaled. In this case, OSSemPost() removes the highest
priority task pending for the semaphore from the pending list and makes this
task ready to run. The scheduler is then called to determine if the awakened
task is now the highest priority task ready to run.

Note that semaphores must be created before they are used.

199

CipherLab C Programming Part |

OSTaskCreate
Purpose To create a task.
Syntax U8 OSTaskCreate (void (*task)(void *pd), void *pdata, OS_STACK *pstk,
U32 stk_size, OS_PRIORITY prio);
Parameters void (*task)
Pointer to the task's code.
void *pdata
Pointer to an optional data area, which can be used to pass parameters to the
task when it is created.
OS_STACK *pstk
typedef u32 OS_STACK;
Pointer to the task's top of stack. The stack is used to store local variables,
function parameters, return addresses, and CPU registers during an interrupt.
> The size of this stack is defined by the task requirements and the
anticipated interrupt nesting. Determining the size of the stack involves
knowing how many bytes are required for storage of local variables for
the task itself, all nested functions, as well as requirements for interrupts
(accounting for nesting).
OS_PRIORITY prio
typedef u8 OS_PRIORITY;
The task priority. A unique priority number must be assigned to each task;
the lower the number, the higher the priority.
Example static 0S_STACK beep_stk[256];

Return Value

Remarks

200

OSTaskCreate(beep_task, (void *)0, beep_stk, 256, 10);

// create a beep_task with priority 10
If successful, it returns OS_NO_ERR.
If the requested priority already exists, it returns OS_PRIO_EXIST.

This function allows an application to create a task. The task is managed by
W/OS. Tasks can be created prior to the start of multitasking or by a running
task.

Note that a task cannot be created by an ISR.

Chapter 4 Real-Time Kernel

OSTaskDel

Purpose To delete a task.

Syntax U8 OSTaskDel (OS_PRIORITY prio);

Parameters OS_PRIORITY prio
typedef us8 OS_PRIORITY;
The task priority. A unique priority number must be assigned to each task;
the lower the number, the higher the priority.

Example err = OSTaskDel (10); // delete a task with priority 10

Return Value

If successful, it returns OS_NO_ERR.
If the task to be deleted does not exist, it returns OS_TASK_DEL_ERR.
If the task to be deleted is an idle task, it returns OS_TASK_DEL_IDLE.

Remarks This function allows user application to delete a task by specifying the priority
number of the task. The calling task can be deleted by specifying its own
priority number. The deleted task is returned to the dormant state. The deleted
task may be created to make the deleted task active again.

Note that an ISR cannot delete a task. This function will verify that you are not
attempting to delete the p/OS's idle task.

OSTimeDly

Purpose To allow a task to delay itself for a number of clock ticks.

Syntax void OSTimeDly (U32 ticks);

Parameters U32 ticks
The number of clock ticks to delay the current task -

» Valid delays range from 1 to 65535 ticks.
> Calling this function with a delay of O results in delay infinitely.
The delay time in units of 1/200 second (= 5 milliseconds).
Example OSTimeDly(10); // delay task for 50 ms
Return Value None

Remarks

This function allows a task to delay itself for a number of clock ticks.
Rescheduling always occurs when the number of clock ticks is greater than
zero.

Note that this function cannot be called from an ISR.

201

CipherLab C Programming Part |

202

SCANNERDESTBL ARRAYS

Appendix |

IN THIS CHAPTER

Symbology Parameter Table for CCD/Laser Reader.............

Symbology Parameter Table for 2D Reader

SYMBOLOGY PARAMETER TABLE FOR CCD/LASER READER

SCANNERDESTBL[]
Byte Bit Description Default Scan Engine
0] 7 1: Enable Code 39 1 CCD, Laser
0: Disable Code 39
6 1: Enable Italian Pharmacode 0 CCD, Laser
O: Disable Italian Pharmacode
5 1: Enable CIP 39 (French Pharmacode) 0 CCD, Laser
O: Disable CIP 39
4 1: Enable Industrial 25 1 CCD, Laser
0: Disable Industrial 25
3 1: Enable Interleaved 25 1 CCD, Laser
0: Disable Interleaved 25
2 1: Enable Matrix 25 0 CCD, Laser
O: Disable Matrix 25
1 1: Enable Codabar (NW7) 1 CCD, Laser
0: Disable Codabar (NW7)
0] 1: Enable Code 93 1 CCD, Laser
0: Disable Code 93

203

CipherLab C Programming Part |

204

1:
(0]
1
0:
1
0]
1
0]

o rOopbp oOoOpbpP OoOopPLpP opbPLp Oopbp Orpr Or O PFL, O Fr, O

o P

Enable Code 128 & EAN-128

: Disable Code 128 & EAN-128
: Enable UPC-E

Disable UPC-E

: Enable UPC-E Addon 2
: Disable UPC-E Addon 2
: Enable UPC-E Addon 5
: Disable UPC-E Addon 5

: Enable EAN-8

: Disable EAN-8

: Enable EAN-8 Addon 2

: Disable EAN-8 Addon 2

: Enable EAN-8 Addon 5

: Disable EAN-8 Addon 5

: Enable EAN-13 & UPC-A

: Disable EAN-13 & UPC-A

: Enable EAN-13 & UPC-A Addon 2
: Disable EAN-13 & UPC-A Addon 2
: Enable EAN-13 & UPC-A Addon 5
: Disable EAN-13 & UPC-A Addon 5
: Enable MSI

: Disable MSI

: Enable Plessey

: Disable Plessey

: Enable Coop 25

: Disable Coop 25

: Enable Telepen

: Disable Telepen

: Enable original Telepen (= Numeric mode)

: Disable original Telepen (= ASCII mode)

: Enable RSS Limited
: Disable RSS Limited

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Reserved

1: Enable RSS-14 & RSS Expanded

0: Disable RSS-14 & RSS Expanded

: Transmit RSS-14 Code ID

: DO NOT transmit RSS-14 Code ID

: Transmit RSS-14 Application 1D

: DO NOT transmit RSS-14 Application ID
: Transmit RSS-14 Check Digit

: DO NOT transmit RSS-14 Check Digit

: Transmit RSS Limited Code ID

o r O Fr O +r O Pk

: DO NOT transmit RSS Limited Code ID

: Transmit RSS Limited Application ID

: DO NOT transmit RSS Limited Application ID
: Transmit RSS Limited Check Digit

: DO NOT transmit RSS Limited Check Digit

S +r O P

1: Transmit RSS Expanded Code ID

0: DO NOT transmit RSS Expanded Code ID
1: Enable UPC-E1 & UPC-EO

0: Enable UPC-EO only

Reserved

1: UPC/EAN Security High

0: UPC/EAN Security Normal

Reserved

1: Verify Coop 25 Check Digit

0: DO NOT verify Coop 25 Check Digit

1: Transmit Coop 25 Check Digit

0: DO NOT transmit Coop 25 Check Digit

Appendix |

ScannerDesTbl Array

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

205

CipherLab C Programming Part |

206

1:
0]
1
0]
1
0
1
0:
1
(0]
1
0
1
0
1
(0]

o r O Fr O +r O Pk

Transmit Code 39 Start/Stop Character

: DO NOT transmit Code 39 Start/Stop Character
: Verify Code 39 Check Digit

: DO NOT verify Code 39 Check Digit

: Transmit Code 39 Check Digit

: DO NOT transmit Code 39 Check Digit

: Full ASCII Code 39

Standard Code 39

: Transmit Italian Pharmacode Check Digit

: DO NOT transmit Italian Pharmacode Check Digit
: Transmit CIP 39 Check Digit

: DO NOT transmit CIP 39 Check Digit

: Verify Interleaved 25 Check Digit

: DO NOT verify Interleaved 25 Check Digit

: Transmit Interleaved 25 Check Digit

: DO NOT transmit Interleaved 25 Check Digit
: Verify Industrial 25 Check Digit

: DO NOT verify Industrial 25 Check Digit

: Transmit Industrial 25 Check Digit

: DO NOT transmit Industrial 25 Check Digit

: Verify Matrix 25 Check Digit

: DO NOT verify Matrix 25 Check Digit

: Transmit Matrix 25 Check Digit

: DO NOT transmit Matrix 25 Check Digit

Select Interleaved 25 Start/Stop Pattern

00:
01:
10:
11:

Use Industrial 25 Start/Stop Pattern
Use Interleaved 25 Start/Stop Pattern
Use Matrix 25 Start/Stop Pattern
Undefined

Select Industrial 25 Start/Stop Pattern

00:
01:
10:
11:

Use Industrial 25 Start/Stop Pattern
Use Interleaved 25 Start/Stop Pattern
Use Matrix 25 Start/Stop Pattern
Undefined

01

00

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Select Matrix 25 Start/Stop Pattern

00: Use Industrial 25 Start/Stop Pattern
01: Use Interleaved 25 Start/Stop Pattern
10: Use Matrix 25 Start/Stop Pattern

11: Undefined

Select Codabar Start/Stop Character

00: abcd/abcd

01: abcd/tn*e

10: ABCD/ABCD

11: ABCD/TN*E

1: Transmit Codabar Start/Stop Character

0: DO NOT transmit Codabar Start/Stop Character

Enable GS1 formatting for EAN-128
1: Enable
0: Disable

Enable GS1 formatting for GS1 DataBar Family

1: Enable
0: Disable

Reserved
Reserved

MSI Check Digit Verification

00: Single Modulo 10

01: Double Modulo 10

10: Modulo 11 and Modulo 10

11: Undefined

MSI Check Digit Transmission

00: Last Check Digit is NOT transmitted
01: Both Check Digits are transmitted

10: Both Check Digits are NOT transmitted
11: Undefined

: Transmit Plessey Check Digits

: DO NOT transmit Plessey Check Digits

: Convert Standard Plessey to UK Plessey
: No conversion

: Convert UPC-E to UPC-A

©C r O BB O Bk

: No conversion

Appendix |

10

00

00

ScannerDesTbl Array

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

207

CipherLab C Programming Part |

10

11

208

1:

o p OpP O pPpP O r OFLr O FLr O FLr O PFrPr O

=Y

Convert UPC-A to EAN-13

: No conversion

: Enable ISBN Conversion

: No conversion

: Enable ISSN Conversion

: No conversion

: Transmit UPC-E Check Digit

: DO NOT transmit UPC-E Check Digit

: Transmit UPC-A Check Digit

: DO NOT transmit UPC-A Check Digit

: Transmit EAN-8 Check Digit

: DO NOT transmit EAN8 Check Digit

: Transmit EAN-13 Check Digit

: DO NOT transmit EAN13 Check Digit

: Transmit UPC-E System Number

: DO NOT transmit UPC-E System Number
: Transmit UPC-A System Number

: DO NOT transmit UPC-A System Number

: Convert EAN-8 to EAN-13
0:

No conversion

Convert EAN8 to EAN13 Format

00: No Read Redundancy for Scanner Port 1

01: One Time Read Redundancy for Scanner Port 1
10: Two Times Read Redundancy for Scanner Port 1
11: Three Times Read Redundancy for Scanner Port 1
1:
0:

1: GTIN-13

O: Default

1: Enable GTIN-14
0:
1
0

Disable GTIN-14

: Enable Negative Barcode

: Disable Negative Barcode

Enable UPC-E Triple Check
Disable UPC-E Triple Check

Reserved

00

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

12

13

14

15

16

17

18

19

20

Appendix |

1: Industrial 25 Code Length Limitation in Max/Min Length
Format

0: Industrial 25 Code Length Limitation in Fixed Length
Format

Industrial 25 Max Code Length / Fixed Length 1
Industrial 25 Min Code Length / Fixed Length 2

1: Interleaved 25 Code Length Limitation in Max/Min
Length Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

Interleaved 25 Max Code Length / Fixed Length 1
Interleaved 25 Min Code Length / Fixed Length 2

1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length
Format

Matrix 25 Max Code Length / Fixed Length 1
Matrix 25 Min Code Length / Fixed Length 2

1: MSI Code Length Limitation in Max/Min Length Format
0: MSI Code Length Limitation in Fixed Length Format
MSI Max Code Length / Fixed Length 1

MSI Min Code Length / Fixed Length 2

Scan Mode for Scanner Port 1
0000: Auto Off Mode

0001: Continuous Mode
0010: Auto Power Off Mode
0011: Alternate Mode

0100: Momentary Mode
0101: Repeat Mode

0110: Laser Mode

0111: Test Mode

1000: Aiming Mode

Reserved

Max. 127
Min. 4

1

Max. 127
Min. 4

1

Max. 127
Min. 4

1

Max. 127
Min. 4

0110

CCD,

CCD,
CCD,

CCD,

CCD,
CCD,

CCD,

CCD,
CCD,

CCD,

CCD,
CCD,

CCD,

ScannerDesTbl Array

Laser

Laser
Laser

Laser

Laser
Laser

Laser

Laser
Laser

Laser

Laser
Laser

Laser

209

CipherLab C Programming Part |

21 7 - 0 | Scanner time-out duration in seconds for Aiming mode, 3 sec. CCD, Laser
Laser mode, Auto Off mode, and Auto Power Off mode
1 — 255 (sec): Decode time-out
0: No time-out
22 7 —6 Byte 1l — bit 7 is required to be 1. 00 CCD, Laser
00: Decode Code 128 & EAN-128
(for compatibility with old firmware version)
01: Decode EAN-128 only
10: Decode Code 128 only
11: Decode Code 128 & EAN-128
5 Byte 1 — bit 7 is required to be 1. 0 CCD, Laser
1: Strip EAN-128 Code ID
0: DO NOT strip EAN-128 Code ID
(for compatibility with old firmware version)
4 1: Enable ISBT 128 1 CCD, Laser
0: Disable ISBT 128
3-0 Reserved --- -—-
SCANNERDESTBL2[]
Byte Bit Description Default Scan Engine
0 7 N/A --- ---
6 1: Enable EAN-13 Addon Mode 529 0 CCD, Laser
O: Disable EAN-13 Addon Mode 529
5 1: Enable EAN-13 Addon Mode 491 0 CCD, Laser
O: Disable EAN-13 Addon Mode 491
4 1: Enable EAN-13 Addon Mode 979 0] CCD, Laser
0: Disable EAN-13 Addon Mode 979
3 1: Enable EAN-13 Addon Mode 978 0] CCD, Laser
0: Disable EAN-13 Addon Mode 978
2 1: Enable EAN-13 Addon Mode 977 0 CCD, Laser
O: Disable EAN-13 Addon Mode 977
1 1: Enable EAN-13 Addon Mode 378/379 0 CCD, Laser
O: Disable EAN-13 Addon Mode 378/379
0] 1: Enable EAN-13 Addon Mode 414/419/434/439 0] CCD, Laser
0: Disable EAN-13 Addon Mode 414/419/434/439

210

15

3-0

N/A

Addon security for UPC/EAN barcodes

Level: 0—~30

N/A

1: Skip checking Code 93 quiet zone
0: check Code 93 quiet zone

1: Skip checking Plessey quiet zone
0: check Plessey quiet zone

1: Skip checking Codabar quiet zone
0: check Codabar quiet zone

1: Skip checking UPC/EAN quiet zone
0: check Code UPC/EAN quiet zone
1: Skip checking Code 39 quiet zone
0: check Code 39 quiet zone

1: Skip checking Code 128 quiet zone
0: check Code 128 quiet zone

Reserved

Appendix |

ScannerDesTbl Array

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

211

CipherLab C Programming Part |

SYMBOLOGY PARAMETER TABLE FOR 2D READER

Byte Bit Description Default Scan Engine

0 7 1: Enable Code 39 1 2D
O: Disable Code 39

6 1: Enable Code 32 (ltalian Pharmacode) 0 2D
0: Disable Code 32

N/A -—- -
N/A --- -—-
1: Enable Interleaved 25 1 2D
O: Disable Interleaved 25

2 1: Enable Matrix 25 0 2D
O: Disable Matrix 25

1 1: Enable Codabar (NW7) 1 2D
0: Disable Codabar (NW7)

(0] 1: Enable Code 93 1 2D
0: Disable Code 93

1 7 1: Enable Code 128 1 2D

O: Disable Code 128

6 1: Enable UPC-EO 1 2D
0: Disable UPC-EO (depends)

3 1: Enable EAN-8 1 2D
0: Disable EAN-8 (depends)

0 1: Enable EAN-13 1 2D
0: Disable EAN-13 (depends)

5 or 4 1: Enable Only Addon 2 & 5 of UPC & EAN Families 0 2D

8: 1 2 (It requires “ANY” of the bits to be set 1.)
0: Disable Only Addon 2 & 5 of UPC & EAN Families

(It requires “ALL” of the bits to be set 0.)
> Refer to Byte 2 - bit 7 or 6; Byte 27 - bit 6 or 4.
2 7 or 6 | See above. 0] 2D
5 1: Enable MSI 0] 2D

0: Disable MSI

212

O B N W b

-0
-6
-0

o ~N 0 N~

N/A
Reserved
N/A
N/A
N/A

N/A

N/A

Reserved

N/A

1: Verify Code 39 Check Digit

: DO NOT verify Code 39 Check Digit

: Transmit Code 39 Check Digit

: DO NOT transmit Code 39 Check Digit
: Full ASCII Code 39

: Standard Code 39

O »r O B O

N/A

1: Transmit Interleaved 25 Check Digit

0: DO NOT transmit Interleaved 25 Check Digit
Reserved

1: Verify Matrix 25 Check Digit

0: DO NOT verify Matrix 25 Check Digit

1: Transmit Matrix 25 Check Digit

0: DO NOT transmit Matrix 25 Check Digit

Reserved

N/A

1: Transmit Codabar Start/Stop Character

0: DO NOT transmit Codabar Start/Stop Character
Enable GS1 formatting for EAN-128

1: Enable

O: Disable

Reserved

Reserved

Appendix |

ScannerDesTbl Array

2D

2D

2D

2D

2D

213

CipherLab C Programming Part |

9 7-6
5-4
3-2
1
0

10 7-6
5
4
3-2
1
0

1 7
6
5-1
0

12 7-0

13 7-0

214

MSI Check Digit Verification

00: Single Modulo 10

01: Double Modulo 10

10: Modulo 11 and Modulo 10

11: Undefined

MSI Check Digit Transmission

00: Last check digit is NOT transmitted
01: Both check digits are transmitted

10: Both check digits are NOT transmitted
11: Undefined

N/A

1: Convert UPC-EO to UPC-A

0: No conversion

1: Convert UPC-A to EAN-13

0: No conversion

N/A

1: Transmit UPC-EO Check Digit

0: DO NOT transmit UPC-EO Check Digit
1: Transmit UPC-A Check Digit

0: DO NOT transmit UPC-A Check Digit
N/A

1: Transmit UPC-EO System Number

0: DO NOT transmit UPC-EO System Number
1: Transmit UPC-A System Number

0: DO NOT transmit UPC-A System Number
1: Convert EAN-8 to EAN-13

0: No conversion

Reserved

N/A

Reserved
N/A

N/A

00

00

2D

2D

2D

2D

2D

2D

2D

2D

2D

14

15

16

17

18

19

20

7
6

5-0
7-6
5-0
7

6

5-0
7-6
5-0
7

6

5-0
5-0
7-4
3-0
7-0
7-0

Appendix |

1: Interleaved 25 Code Length Limitation in Max/Min
Length Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

Reserved

Interleaved 25 Max Code Length / Fixed Length 1

Reserved
Interleaved 25 Min Code Length / Fixed Length 2

Note | engthl must be greater than Length2.

1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length
Format

Reserved

Matrix 25 Max Code Length / Fixed Length 1

Reserved

Matrix 25 Min Code Length / Fixed Length 2

Not® | ength1l must be greater than Length2.

1: MSI Code Length Limitation in Max/Min Length Format
0: MSI Code Length Limitation in Fixed Length Format
Reserved

MSI Max Code Length / Fixed Length 1

Reserved
MSI Min Code Length / Fixed Length 2
Note | engthl must be greater than Length2.

Scan Mode for Scanner Port 1

1000: Aiming Mode

0111: Test Mode

0110: Laser Mode

0011: Alternate Mode

0001: Continuous Mode

0000: Auto-off Mode

Any value other than the above: Laser Mode

Reserved
N/A

Reserved

1

Min. 4

Laser
Mode

2D

2D

2D

2D

2D

2D

2D

ScannerDesTbl Array

215

CipherLab C Programming Part |

23

24

25

216

1: Code 39 Length Limitation in Max/Min Length Format
0: Code 39 Length Limitation in Fixed Length Format
Reserved

Code 39 Max Code Length / Fixed Lengthl

Reserved

Code 39 Min Code Length / Fixed Length2
Note | engthl must be greater than Length2.
1: Transmit UPC-E1 System Number

0: DO NOT transmit UPC-E1 System Number
1: Transmit UPC-E1 Check Digit

0: DO NOT transmit UPC-E1 Check Digit

1 : Enable GS1-128 Emulation Mode for UCC/EAN
Composite Codes

0 : Disable GS1-128 Emulation Mode for UCC/EAN

Composite Codes

1: Enable TCIF Linked Code 39
0: Disable TCIF Linked Code 39
: Convert UPC-E1 to UPC-A

: No conversion

: Enable Code 11

: Disable Code 11

R O B O B

: Enable Bookland EAN
(Byte 1 - bit O for EAN-13 is required to be 1.)
0: Disable Bookland EAN

1: Enable Joint Configuration of No Addon, Addon 2 & 5

for Any Member of UPC/EAN Families

0: Disable Joint Configuration

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

26

27

28

1
0

Appendix |

: Enable Industrial 25 (Discrete 25)
: Disable Industrial 25 (Discrete 25)

Reserved

1
0

S r O P O P O P, O P

R O LB O B

: Enable Trioptic Code 39
: Disable Trioptic Code 39
: Enable UCC/EAN-128

: Disable UCC/EAN-128

: Convert RSS to UPC/EAN
: No conversion

: Enable RSS Expanded

: Disable RSS Expanded

: Enable RSS Limited

: Disable RSS Limited

: Enable RSS-14

: Disable RSS-14

: Enable UPC-A

: Disable UPC-A (depends)

: Enable UPC-E1

: Disable UPC-E1 (depends)

: Enable Only Addon 2 & 5 of UPC & EAN Families
(It requires “ANY” of the bits to be set 1.)

: Disable Only Addon 2 & 5 of UPC & EAN Families
(It requires “ALL” of the bits to be set 0.)

> Refer to Byte 1 - bit 5, 4, 2 or 1; Byte 2 - bit 7 or 6.

00: UPC Never Linked
01: UPC Always Linked

10: Autodiscriminate UPC Composite

11: Undefined

1
0:
1
0

1:
0:

: Enable Composite CC-A/B
Disable Composite CC-A/B
: Enable Composite CC-C

: Disable Composite CC-C

Code 93 Length Limitation in Max/Min Length Format
Code 93 Length Limitation in Fixed Length Format

Reserved

Code 93 Max Code Length / Fixed Lengthl

01

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

ScannerDesTbl Array

217

CipherLab C Programming Part |

29

30

31

32

33

34

35

218

Reserved

Code 93 Min Code Length / Fixed Length2

Note | engthl must be greater than Length2.

1: Code 11 Length Limitation in Max/Min Length Format
0: Code 11 Length Limitation in Fixed Length Format
Reserved

Code 11 Max Code Length / Fixed Lengthl

Reserved
Code 11 Min Code Length / Fixed Length2
Note | engthl must be greater than Length2.

1: Industrial 25 (Discrete 25) Length Limitation in Max/Min
Length Format

0: Industrial 25 (Discrete 25) Length Limitation in Fixed
Length Format

Reserved

Industrial 25 (Discrete 25) Max Code Length / Fixed
Lengthl

Reserved

Industrial 25 (Discrete 25) Min Code Length / Fixed
Length2

Note | engthl must be greater than Length2.

1: Codabar Length Limitation in Max/Min Length Format
0: Codabar Length Limitation in Fixed Length Format
Reserved

Codabar Max Code Length / Fixed Lengthl

Reserved

Codabar Min Code Length / Fixed Length2

Note | engthl must be greater than Length2.

Max. 55

2D

2D

2D

2D

2D

2D

36

37

38

Appendix |

: Transmit US Postal Check Digit
: DO NOT transmit US Postal Check Digit
: Enable Maxicode

: Disable Maxicode

: Enable Data Matrix

: Disable Data Matrix

: Enable QR Code

: Disable QR Code

: Enable US Planet

: Disable US Planet

: Enable US Postnet

: Disable US Postnet

: Enable MicroPDF417

: Disable MicroPDF417

: Enable PDF417

o+ O b Obhp O r OFLP O P O FP, OFPR

: Disable PDF417

00: DO NOT verify Interleaved 25 Check Digit
01: Verify Interleaved 25 USS Check Digit
10: Verify Interleaved 25 OPCC Check Digit
11: Undefined

Reserved

1: Enable Japan Postal

0: Disable Japan Postal

: Enable Australian Postal

: Disable Australian Postal

: Enable Dutch Postal

: Disable Dutch Postal

: Enable UK Postal Check Digit

: Disable UK Postal Check Digit

P O P O Fr O R

: Enable UK Postal
0: Disable UK Postal

Scanner time-out duration in seconds for Aiming mode,

Laser mode and Auto-off mode
1 — 255 (sec): Decode time-out

0: No time-out (= always scanning)

00

3 sec.

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

ScannerDesTbl Array

219

CipherLab C Programming Part |

39

40

220

Enable UPC-A System Number & Country Code
: Disable UPC-A System Number & Country Code
: Enable UPC-E System Number & Country Code

1:
(0]
1
0: Disable UPC-E System Number & Country Code
1: Enable UPC-E1 System Number & Country Code
0: Disable UPC-E1 System Number & Country Code
1: Convert Interleaved 25 to EAN-13

0: No conversion

Macro PDF Transmit / Decode Mode

00: Passthrough all symbols

01: Buffer all symbols / Transmit Macro PDF when
complete

10: Transmit any symbol in set / No particular order
1: Enable Macro PDF Escape Characters

0: Disable Macro PDF Escape Characters

1: Enable USPS 4CB / One Code / Intelligent Mail

0: Disable USPS 4CB / One Code / Intelligent Mail

00: Far Focus

01: Near Focus

10: Smart Focus

1: Enable Decode Aiming Pattern
0: Disable Decode Aiming Pattern
1: Enable Decode lllumination

0: Disable Decode lllumination

1: Enable Picklist Mode

0: Disable Picklist Mode

1D Inverse Decoder

00: Decode regular 1D barcode only

01: Decode inverse 1D barcode only

10: Decode both regular and inverse

1: Reader sleeps during system suspend

0: Reader is powered off during system suspend

00

00

00

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

41

42

43

1: Enable UPU FICS Postal

O: Disable UPU FICS Postal

UPC/EAN — Bookland ISBN Format
1: UPC/EAN — Bookland ISBN 13

0: UPC/EAN — Bookland ISBN 10
Data Matrix Inverse

00: Decode regular Data Matrix only
01: Decode inverse Data Matrix only
10: Decode both regular and inverse
Data Matrix Mirror

00: Decode unmirrored Data Matrix only
01: Decode mirrored Data Matrix only
10: Decode both mirrored and unmirrored
QR Code Inverse

00: Decode regular QR Code only
01: Decode inverse QR Code only
10: Decode both regular and inverse
1: Enable MicroQR

0: Disable MicroQR

1: Enable Aztec

0: Disable Aztec

Aztec Inverse

00: Decode regular Aztec only

01: Decode inverse Aztec only

10: Decode both regular and inverse
1: Enable UCC Coupon Code

0: Disable UCC Coupon Code

1: Enable Chinese 25

0: Disable Chinese 25

Code 11 Check Digit Verification

00: Disable

01: One check digit

10: Two check digits

1: Enable Mobile Display

O: Disable

Appendix |

00

00

00

00

00

ScannerDesTbl Array

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

221

CipherLab C Programming Part |

44

222

6-5

4-1

00: No Read Redundancy

01: One Time Read Redundancy

10: Two Times Read Redundancy

1010: max. illumination level

0001: min. illumination level

Enable GS1 formatting for GS1 DataBar Omnidirectional
1: Enable

O: Disable

Enable GS1 formatting for GS1-DataBar Limited
1: Enable

O: Disable

Enable GS1 formatting for GS1-DataBar Expanded
1: Enable

O: Disable

Enable GS1 formatting for Composite CC-A/B

1: Enable

0: Disable

Enable GS1 formatting for Composite CC-C

1: Enable

0: Disable

Enable GS1 formatting for GS1 DataMatrix

1: Enable

0: Disable

Enable GS1 formatting for GS1 QR Code

1: Enable

O: Disable

00

1010

2D

2D

2D

2D

2D

2D

2D

2D

2D

Appendix Il
SYMBOLOGY PARAMETERS

Each of the scan engines can decode a number of barcode symbologies. This appendix
describes the associated symbology parameters accordingly.

IN THIS CHAPTER
Scan ENgine — CCD OF LaSer....cuveiiiiiiiiii e eiaeeeeas 224
SCaN ENQINE — 2D ..uuiiiiiie et 241

223

CipherLab C Programming Part |

SCAN ENGINE - CCD OR LASER

CODABAR

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

0 1 1: Enable Codabar (NW7) 1 CCD, Laser
0: Disable Codabar (NW7)

7 5 - 4 | Select Codabar Start/Stop Character 00 CCD, Laser
00: abcd/abcd
01: abcd/tn*e
10: ABCD/ABCD
11: ABCD/TN*E

7 3 1: Transmit Codabar Start/Stop Character 0 CCD, Laser
0: DO NOT transmit Codabar Start/Stop Character

ScannerDesTbI2[]
Byte | Bit Description Default Scan Engine
2 3 1: Skip checking Codebar quiet zone 0 CCD, Laser

0: Check Codebar quiet zone

Select Start/Stop Character

Select no start/stop characters, or one of the four different start/stop character pairs to be
included in the data being transmitted.

» abcd/abcd
» abcd/tn*e
» ABCD/ABCD
> ABCD/TN*E

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Check Quiet Zone

Decide whether or not to check the Codebar quiet zone.

224

Appendix Il Symbology Parameters

CODE 2 OF 5 FAMILY

INDUSTRIAL 25

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine
0 4 1: Enable Industrial 25 1 CCD, Laser
O: Disable Industrial 25
6 7 1: Verify Industrial 25 Check Digit 0 CCD, Laser
0: DO NOT verify Industrial 25 Check Digit
6 6 1: Transmit Industrial 25 Check Digit 1 CCD, Laser
0: DO NOT transmit Industrial 25 Check Digit
6 1 - 0 |Select Industrial 25 Start/Stop Pattern 00 CCD, Laser
00: Use Industrial 25 Start/Stop Pattern
01: Use Interleaved 25 Start/Stop Pattern
10: Use Matrix 25 Start/Stop Pattern
11: Undefined
12 7 1: Industrial 25 Code Length Limitation in Max/Min Length 1 CCD, Laser
Format
0: Industrial 25 Code Length Limitation in Fixed Length
Format
12 6 - O | Industrial 25 Max Code Length / Fixed Length 1 Max. 127 | CCD, Laser
13 7 - 0 | Industrial 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser
Verify Check Digijt

Decide whether or not to perform check digit verification when decoding barcodes.

> If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Select Start/Stop Pattern

Select a suitable Start/Stop pattern for reading a specific variant of 2 of 5 symbology.

> For example, flight tickets actually use an Industrial 2 of 5 barcode but with Interleaved 2 of 5
start/stop pattern. In order to read this barcode, the start/stop pattern selection parameter of
Industrial 2 of 5 should set to “Interleaved 25”.

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length.

> If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

225

CipherLab C Programming Part |

> If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified.

INTERLEAVED 25

Refer to Industrial 25.

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine
0 3 1: Enable Interleaved 25 1 CCD, Laser
O: Disable Interleaved 25
5 1 1: Verify Interleaved 25 Check Digit 0 CCD, Laser
0: DO NOT verify Interleaved 25 Check Digit
5 0 1: Transmit Interleaved 25 Check Digit 1 CCD, Laser
0: DO NOT transmit Interleaved 25 Check Digit
6 3 - 2 Select Interleaved 25 Start/Stop Pattern 01 CCD, Laser
00: Use Industrial 25 Start/Stop Pattern
01: Use Interleaved 25 Start/Stop Pattern
10: Use Matrix 25 Start/Stop Pattern
11: Undefined
14 7 1: Interleaved 25 Code Length Limitation in Max/Min 1 CCD, Laser
Length Format
0: Interleaved 25 Code Length Limitation in Fixed Length
Format
14 6 - O | Interleaved 25 Max Code Length / Fixed Length 1 Max. 127 | CCD, Laser
15 7 - 0 | Interleaved 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

226

Appendix Il Symbology Parameters

MATRIX 25

Refer to Industrial 25.

ScannerDesTblI[]

Byte | Bit Description Default Scan Engine
0 2 1: Enable Matrix 25 0 CCD, Laser
0: Disable Matrix 25
6 5 1: Verify Matrix 25 Check Digit 0 CCD, Laser
0: DO NOT verify Matrix 25 Check Digit
6 4 1: Transmit Matrix 25 Check Digit 1 CCD, Laser
0: DO NOT transmit Matrix 25 Check Digit
7 7 - 6 | Select Matrix 25 Start/Stop Pattern 10 CCD, Laser
00: Use Industrial 25 Start/Stop Pattern
01: Use Interleaved 25 Start/Stop Pattern
10: Use Matrix 25 Start/Stop Pattern
11: Undefined
16 7 1: Matrix 25 Code Length Limitation in Max/Min Length 1 CCD, Laser
Format
0: Matrix 25 Code Length Limitation in Fixed Length
Format
16 6 - O | Matrix 25 Max Code Length / Fixed Length 1 Max. 127 | CCD, Laser
17 7 - 0 | Matrix 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

227

CipherLab C Programming Part |

COOP 25

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

2 3 1: Enable Coop 25 0 CCD, Laser
0: Disable Coop 25

4 1 1: Verify Coop 25 Check Digit 0 CCD, Laser
0: DO NOT verify Coop 25 Check Digit

4 0 1: Transmit Coop 25 Check Digit 1 CCD, Laser
0: DO NOT transmit Coop 25 Check Digit

Verify Check Digijt

Decide whether or not to perform check digit verification when decoding barcodes.

» If true and the check digit found incorrect, the barcode will not be accepted.

Note: “Verify Check Digit” must be enabled so that the check digit can be left out when it
is preferred not to transmit the check digit.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

CODE 39

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

0 7 1: Enable Code 39 1 CCD, Laser
0: Disable Code 39

5 7 1: Transmit Code 39 Start/Stop Character 0 CCD, Laser
0: DO NOT transmit Code 39 Start/Stop Character

5 6 1: Verify Code 39 Check Digit 0 CCD, Laser
0: DO NOT verify Code 39 Check Digit

5 5 1: Transmit Code 39 Check Digit 1 CCD, Laser
0: DO NOT transmit Code 39 Check Digit

5 4 1: Full ASCII Code 39 0] CCD, Laser
0: Standard Code 39

ScannerDesTbl2[]

Byte | Bit Description Default Scan Engine

228

Appendix Il Symbology Parameters

2 1 1: Skip checking Code 39 quiet zone 0 CCD, Laser
0: Check Code 39 quiet zone

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

> If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Code 39 Full ASCII

Decide whether or not to support Code 39 Full ASCII that includes all the alphanumeric and
special characters.

Check Quiet Zone

Decide whether or not to check the Code 39 quiet zone.

CODE 93

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

0 0 1: Enable Code 93 1 CCD, Laser
0: Disable Code 93

ScannerDesTbI2[]
Byte | Bit Description Default Scan Engine
2 5 1: Skip checking Code 93 quiet zone 0 CCD, Laser

0: Check Code 93 quiet zone

Check Quiet Zone

Decide whether or not to check the Code 93 quiet zone.

229

CipherLab C Programming Part |

CODE 128/EAN-128/ISBT 128

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine
1 7 1: Enable Code 128 & EAN-128 1 CCD, Laser
O: Disable Code 128 & EAN-128
7 2 1: Enable GS1 formatting for EAN-128 0 CCD, Laser
0: Disable GS1 formatting for EAN-128
22 7 -6 Byte 1 — bit 7 is required to be 1. 00 CCD, Laser
00: Decode Code 128 & EAN-128
(for compatibility with old firmware version)
01: Decode EAN-128 only
10: Decode Code 128 only
11: Decode Code 128 & EAN-128
22 5 Byte 1 — bit 7 is required to be 1. 0 CCD, Laser
1: Strip EAN-128 Code ID
0: DO NOT strip EAN-128 Code ID
(for compatibility with old firmware version)
22 4 1: Enable ISBT 128 1 CCD, Laser
O: Disable ISBT 128
ScannerDesTbl2[]
Byte | Bit Description Default Scan Engine
2 0 1: Skip checking Code 128 quiet zone 0 CCD, Laser

0: Check Code 128 quiet zone

Code 128/EAN 128 Decoding

Decide to decode only Code 128, only EAN-128, or both of them.

Strip EAN-128 Code ID

Decide whether to stripe EAN-128 Code ID.

Check Quiet Zone

Decide whether or not to check the Code 128 quiet zone.

230

Appendix Il Symbology Parameters

ITALIAN/FRENCH PHARMACODE

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

0 6 1: Enable Italian Pharmacode 0 CCD, Laser
0: Disable Italian Pharmacode

0 5 1: Enable CIP 39 (French Pharmacode) 0 CCD, Laser
0: Disable CIP 39

5 3 1: Transmit Italian Pharmacode Check Digit 0 CCD, Laser
0: DO NOT transmit Italian Pharmacode Check Digit

5 2 1: Transmit CIP 39 Check Digit 0 CCD, Laser
0: DO NOT transmit CIP 39 Check Digit

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Note: Share the Transmit Start/Stop Character setting with Code 39.

231

CipherLab C Programming Part |

MSI

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

2 5 1: Enable MSI 0 CCD, Laser
0: Disable MSI

9 7 - 6 | MSI Check Digit Verification 00 CCD, Laser

00: Single Modulo 10
01: Double Modulo 10
10: Modulo 11 and Modulo 10
11: Undefined
9 5 - 4 | MSI Check Digit Transmission 00 CCD, Laser
00: Last Check Digit is NOT transmitted
01: Both Check Digits are transmitted
10: Both Check Digits are NOT transmitted
11: Undefined
18 7 1: MSI Code Length Limitation in Max/Min Length Format 1 CCD, Laser
0: MSI Code Length Limitation in Fixed Length Format

18 6 - 0O | MSI Max Code Length / Fixed Length 1 Max. 127 | CCD, Laser
19 7 - 0 | MSI Min Code Length / Fixed Length 2 Min. 4 CCD, Laser
Verify Check Digit

Select one of the three calculations to perform check digit verification when decoding barcodes.

> If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the symbology, it is possible to make a “short scan” error. To
prevent the “short scan” error, define the “Length Qualification” settings to ensure that the correct
barcode is read by qualifying the allowable code length.

> If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

> If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified.

232

Appendix Il Symbology Parameters

NEGATIVE BARCODE

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

11 4 1: Enable Negative Barcode 1 CCD, Laser

0: Disable Negative Barcode

PLESSEY

ScannerDesTblI[]

Byte | Bit Description Default Scan Engine

2 4 1: Enable Plessey 0 CCD, Laser
0: Disable Plessey

9 3 1: Transmit Plessey Check Digits 1 CCD, Laser
0: DO NOT transmit Plessey Check Digits

9 2 1: Convert Standard Plessey to UK Plessey 1 CCD, Laser
0: No conversion

ScannerDesTbl2[]

Byte | Bit Description Default Scan Engine

2 4 1: Skip checking Plessy quiet zone 0 CCD, Laser

0: Check Plessy quiet zone

Transmit Check Digits

Decide whether or not to include the two check digits in the data being transmitted.

Convert to UK Plessey

Decide whether or not to change each occurrence of the character 'A' to character 'X' in the
decoded data.

Check Quiet Zone

Decide whether or not to check the Plessy quiet zone.

233

CipherLab C Programming Part |

GS1 DATABAR (RSS) FAMILY

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

2 0 1: Enable RSS Limited 0 CCD, Laser
O: Disable RSS Limited

3 6 1: Enable RSS-14 & RSS Expanded 0 CCD, Laser
0: Disable RSS-14 & RSS Expanded

3 5 1: Transmit RSS-14 Code ID 1 CCD, Laser
0: DO NOT transmit RSS-14 Code 1D

3 4 1: Transmit RSS-14 Application ID 1 CCD, Laser
0: DO NOT transmit RSS-14 Application ID

3 3 1: Transmit RSS-14 Check Digit 1 CCD, Laser
0: DO NOT transmit RSS-14 Check Digit

3 2 1: Transmit RSS Limited Code ID 1 CCD, Laser
0: DO NOT transmit RSS Limited Code ID

3 1 1: Transmit RSS Limited Application ID 1 CCD, Laser
0: DO NOT transmit RSS Limited Application ID

3 0 1: Transmit RSS Limited Check Digit 1 CCD, Laser
0: DO NOT transmit RSS Limited Check Digit

4 7 1: Transmit RSS Expanded Code ID 1 CCD, Laser
0: DO NOT transmit RSS Expanded Code ID

7 1 1: Enable GS1 formatting for GS1 DataBar Family 0 CCD, Laser
0: Disable GS1 formatting for GS1 DataBar Family

Transmit Code ID

Decide whether or not to include the Code ID (“]e0”) in the data being transmitted.

Transmit Application ID

Decide whether or not to include the Application ID (“01”) in the data being transmitted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

234

Appendix Il Symbology Parameters

TELEPEN

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

2 2 1: Enable Telepen 0 CCD, Laser
0: Disable Telepen

2 1 1: Enable original Telepen (= Numeric mode) 0 CCD, Laser
0: Disable original Telepen (= ASCII mode)

Original Telepen (Numeric)

Decide whether or not to support Telepen in full ASCII code. By default, it supports ASCII mode.

> AIM Telepen (Full ASCII) includes all the alphanumeric and special characters.

UPC/EAN FAMILIES

EAN-8

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

1 3 1: Enable EAN-8 1 CCD, Laser
O: Disable EAN-8

1 2 1: Enable EAN-8 Addon 2 0] CCD, Laser
O: Disable EAN-8 Addon 2

1 1 1: Enable EAN-8 Addon 5 0 CCD, Laser
O: Disable EAN-8 Addon 5

10 3 1: Transmit EAN-8 Check Digit 1 CCD, Laser
0: DO NOT transmit EAN8 Check Digit

11 7 1: Convert EAN-8 to EAN-13 0 CCD, Laser
0: No conversion

11 6 1: Convert EAN-8 to EAN-13 in GTIN-13 format (0] CCD, Laser
0: Convert EAN-8 to EAN-13 in default format

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Convert EAN-8 to EAN-13

Decide whether or not to expand the read EAN-8 barcode into EAN-13. If true, the next
processing will follow the parameters configured for EAN-13.

235

CipherLab C Programming Part |

EAN-13

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

1 0 1: Enable EAN-13 & UPC-A 1 CCD, Laser
O: Disable EAN-13 & UPC-A

2 7 1: Enable EAN-13 & UPC-A Addon 2 0] CCD, Laser
O: Disable EAN-13 & UPC-A Addon 2

2 6 1: Enable EAN-13 & UPC-A Addon 5 0] CCD, Laser
O: Disable EAN-13 & UPC-A Addon 5

10 7 1: Enable ISBN Conversion 0 CCD, Laser
0: No conversion

10 6 1: Enable ISSN Conversion 0 CCD, Laser
0: No conversion

10 2 1: Transmit EAN-13 Check Digit 1 CCD, Laser
0: DO NOT transmit EAN13 Check Digit

Convert EAN-13 to ISBN

Decide whether or not to convert the EAN-13 barcode, starting with 978 and 979, to ISBN.

Convert EAN-13 to ISSN

Decide whether or not to convert the EAN-13 barcode, starting with 977 to ISSN.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

EAN-13 ADDON MODE

ScannerDesTbl2[]
Byte | Bit Description Default Scan Engine
(0] 7 N/A -—- CCD, Laser
6 1: Enable EAN-13 Addon Mode 529 0 CCD, Laser
0: Disable EAN-13 Addon Mode 529
5 1: Enable EAN-13 Addon Mode 491 0] CCD, Laser
0: Disable EAN-13 Addon Mode 491
4 1: Enable EAN-13 Addon Mode 979 0] CCD, Laser
0: Disable EAN-13 Addon Mode 979
3 1: Enable EAN-13 Addon Mode 978 0 CCD, Laser
O: Disable EAN-13 Addon Mode 978

236

Appendix Il Symbology Parameters
2 1: Enable EAN-13 Addon Mode 977 0 CCD, Laser
O: Disable EAN-13 Addon Mode 977
1 1: Enable EAN-13 Addon Mode 378/379 0 CCD, Laser
0: Disable EAN-13 Addon Mode 378/379
(0} 1: Enable EAN-13 Addon Mode 414/419/434/439 0 CCD, Laser
O: Disable EAN-13 Addon Mode 414/419/434/439
Convert EAN-13 Addon Mode 529
When enabled, the EAN-13 barcode, starting with 529, is supposed to come with its addons.
Otherwise, the reading process fails.
EAN-13 Addon Mode 491
When enabled, the EAN-13 barcode, starting with 491, is supposed to come with its addons.
Otherwise, the reading process fails.
EAN-13 Addon Mode 979
When enabled, the EAN-13 barcode, starting with 979, is supposed to come with its addons.
Otherwise, the reading process fails.
EAN-13 Addon Mode 978
When enabled, the EAN-13 barcode, starting with 978, is supposed to come with its addons.
Otherwise, the reading process fails.
EAN-13 Addon Mode 977
When enabled, the EAN-13 barcode, starting with 977, is supposed to come with its addons.

Otherwise, the reading process fails.

EAN-13 Addon Mode 378/379

When enabled, the EAN-13 barcode, starting with 378/379, is supposed to come with its

Otherwise, the reading process fails.

EAN-13 Addon Mode 414/419/434/439

addons.

When enabled, the EAN-13 barcode, starting with 414/419/434/439, is supposed to come with its

addons. Otherwise, the reading process fails.

GTIN

ScannerDesTblI[]

Byte | Bit Description

Default

Scan Engine

11 5 1: Enable GTIN-14
0: Disable GTIN-14

UPC-A

0

CCD,

Laser

237

CipherLab C Programming Part |

ScannerDesTbl[]

Byte | Bit Description Default Scan Engine

9 0 : Convert UPC-A to EAN-13 0 CCD, Laser
: No conversion
10 4 : Transmit UPC-A Check Digit 1 CCD, Laser

10 0

1

0

1

0: DO NOT transmit UPC-A Check Digit

1: Transmit UPC-A System Number 1 CCD, Laser
0]

: DO NOT transmit UPC-A System Number

Convert UPC-A to EAN-13

Decide whether or not to expand the read UPC-A barcode into EAN-13. If true, the next
processing will follow the parameters configured for EAN-13.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Transmit System Number

Decide whether or not to include the system number in the data being transmitted.

Note: UPC-A is to be enabled together with EAN-13, therefore, check associated EAN-13
settings first.

UPC-E

ScannerDesTblI[]

Byte | Bit Description Default Scan Engine

1 6 1: Enable UPC-E 1 CCD, Laser
O: Disable UPC-E

1 5 1: Enable UPC-E Addon 2 0 CCD, Laser
0: Disable UPC-E Addon 2

1 4 1: Enable UPC-E Addon 5 0 CCD, Laser
O: Disable UPC-E Addon 5

4 6 1: Enable UPC-E1 & UPC-EO 0] CCD, Laser
0: Enable UPC-EO only

9 1 1: Convert UPC-E to UPC-A 0 CCD, Laser
0: No conversion

10 5 1: Transmit UPC-E Check Digit 1 CCD, Laser
0: DO NOT transmit UPC-E Check Digit

238

Appendix Il Symbology Parameters

10 1 1: Transmit UPC-E System Number 0 CCD, Laser
0: DO NOT transmit UPC-E System Number

11 1 1: Enable UPC-E Triple Check 0 CCD, Laser
0: Disable UPC-E Triple Check

Convert UPC-E to UPC-A

Decide whether or not to expand the read UPC-E barcode into UPC-A. If true, the next processing
will follow the parameters configured for UPC-A.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Transmit System Number

Decide whether or not to include the system number in the data being transmitted.

UPC-E Triple Check

Decide whether to apply a triple check to the UPC-E barcode. If enabled, the correct rate will be
improved; however, enabling it may cause difficulties in reading some non-standard barcodes.

» This is helpful when the barcode is defaced and requires more attempts to check it.

ADDON SECURITY FOR UPC/EAN

ScannerDesTbl2[]
Byte | Bit Description Default Scan Engine
1 7-5 N/A -
4 - 0 Addon security for UPC/EAN barcodes 0 CCD, Laser
Level: 0—30

Addon Security for UPC/EAN

The scanner is capable of decoding a mix of UPC/EAN barcodes with and without addons. The read
redundancy (level) ranging from O to 30 allows changing the number of times to decode a
UPC/EAN barcode before transmission.

UPC/EAN SECURITY

ScannerDesTblI[]

Byte | Bit Description Default Scan Engine

4 3 1: UPC/EAN Security High 0 CCD, Laser
0: UPC/EAN Security Normal

UPC/EAN Security

High security ensures that the scanner read a UPC/EAN barcode correctly. By contrast, normal
security will enhance reading ability of the scanner.

239

CipherLab C Programming Part |

UPC/EAN QUIET ZONE

ScannerDesTbl2[]
Byte | Bit Description Default Scan Engine
2 2 1: Skip checking UPC/EAN quiet zone 0 CCD, Laser

0: Check UPC/EAN quiet zone

Check Quiet Zone

Decide whether or not to check the UPC/EAN quiet zone.

240

Appendix Il Symbology Parameters

SCAN ENGINE - 2D

CODABAR
Byte | Bit Description Default Scan Engine
0 1 1: Enable Codabar (NW7) 1 2D
0: Disable Codabar (NW7)
7 3 1: Transmit Codabar Start/Stop Character 0 2D
0: DO NOT transmit Codabar Start/Stop Character
34 7 1: Codabar Length Limitation in Max/Min Length Format 1 2D
0: Codabar Length Limitation in Fixed Length Format
34 5 -0 Codabar Max Code Length / Fixed Lengthl Max. 55 2D
35 5 -0 Codabar Min Code Length / Fixed Length2 Min. 4 2D

Note | engthl must be greater than Length2.

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Length Qualification

The barcode can be qualified by “Fixed Length” or “Max/Min Length”. The length of a barcode
refers to the number of characters (= human readable characters), including check digit(s) it
contains.

> If “Fixed Length” is selected, up to 2 fixed lengths can be specified. With Fixed Length Format

selected, Lengthl must be greater than Length2. Otherwise, the format will be converted to
Max/Min Length Format, and Lengthl becomes Min Length while Length2 becomes Max
Length.

(1) Setting Lengthl to a nonzero value and Length2 to O will only accept barcodes whose
length equals Lengthl.

(2) Setting both Lengthl and Length2 to nonzero values will accept barcodes whose length
equal either Lengthl or Length2. Note Lengthl must be greater than Length2.

If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified. Max Code Length must be greater than Min Code Length.

If both Lengthl and Length2 are set to zero, barcodes of any length will be accepted
regardless of “Fixed Length” or “Max/Min Length”.

Tips:

To accept barcodes of any length, set both Lengthl and Length2 to zero.

To accept barcodes within specified range, set Length limitation in Max/Min Length Format;
Max Code Length must be greater than Min Code Length.

To accept barcodes for one fixed length, set Length limitation in Fixed Length Format and
specify Lengthel to a nonzero value and Length2 to O.

To accept barcodes for either of two fixed lengths, set Length limitation in Fixed Length
Format and specify both Lengthl and Length2 values; Lengthl must be greater than Length2.

241

CipherLab C Programming Part |

CODE20OF 5

INDUSTRIAL 25 (DISCRETE 25)

Byte | Bit Description Default Scan Engine
26 7 1: Enable Industrial 25 (Discrete 25) 1 2D
0: Disable Industrial 25 (Discrete 25)
32 7 1: Industrial 25 (Discrete 25) Length Limitation in Max/Min 1 2D
Length Format
0: Industrial 25 (Discrete 25) Length Limitation in Fixed
Length Format
32 5 -0 Industrial 25 (Discrete 25) Max Code Length / Fixed Max.55 |2D
Lengthl
33 5 -0 Industrial 25 (Discrete 25) Min Code Length / Fixed Min. 4 2D

Length2
Note | engthl must be greater than Length2.

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length. Refer to Codabar.

INTERLEAVED 25

Byte | Bit Description Default Scan Engine

0 3 1: Enable Interleaved 25 1 2D
O: Disable Interleaved 25

5 0 1: Transmit Interleaved 25 Check Digit 1 2D
0: DO NOT transmit Interleaved 25 Check Digit

14 7 1: Interleaved 25 Code Length Limitation in Max/Min 1 2D
Length Format
0: Interleaved 25 Code Length Limitation in Fixed Length
Format

14 5 - Interleaved 25 Max Code Length / Fixed Length 1 Max. 55 2D

15 5- Interleaved 25 Min Code Length / Fixed Length 2 Min. 4 2D
Note | engthl must be greater than Length2.

37 7 - 6 00: DO NOT verify Interleaved 25 Check Digit 00 2D

242

01: Verify Interleaved 25 USS Check Digit
10: Verify Interleaved 25 OPCC Check Digit
11: Undefined

Appendix Il Symbology Parameters

39 4 1: Convert Interleaved 25 to EAN-13 0 2D

0: No conversion

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length. Refer to Codabar.

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

» If true and the check digit found incorrect, the barcode will not be accepted.

Convert to EAN-13

Decide whether or not to convert a 14-character Interleaved 25 barcode into EAN-13. If true, the
next processing will follow the parameters configured for EAN-13.

> Interleaved 25 barcode must have a leading zero and a valid EAN-13 check digit.

Note: “Convert Interleaved 25 to EAN-13” cannot be enabled unless check digit
verification is disabled (= 00).

CODE 39

Byte | Bit Description Default Scan Engine

(0] 7 1: Enable Code 39 1 2D
O: Disable Code 39

0 6 1: Enable Code 32 (ltalian Pharmacode) 0 2D
O: Disable Code 32

5 6 1: Verify Code 39 Check Digit 0 2D
0: DO NOT verify Code 39 Check Digit

5 5 1: Transmit Code 39 Check Digit 1 2D
0: DO NOT transmit Code 39 Check Digit

5 4 1: Full ASCII Code 39 0 2D
0: Standard Code 39

23 7 1: Code 39 Length Limitation in Max/Min Length Format 1 2D
0: Code 39 Length Limitation in Fixed Length Format

23 5 -0 Code 39 Max Code Length / Fixed Lengthl Max. 55 2D

24 5 -0 Code 39 Min Code Length / Fixed Length2 Min. 4 2D

Note | engthl must be greater than Length2.

243

CipherLab C Programming Part |

26 5 1: Enable Trioptic Code 39 0 2D
0: Disable Trioptic Code 39

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

» If true and the check digit found incorrect, the barcode will not be accepted.

Note: “Verify Check Digit” must be enabled so that the check digit can be left out when it
is preferred not to transmit the check digit.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Code 39 Full ASCII

Decide whether or not to support Code 39 Full ASCII that includes all the alphanumeric and
special characters.

Length Qualification

Refer to Codabar.

CODE 93
Byte | Bit Description Default Scan Engine
0 0 1: Enable Code 93 1 2D
O: Disable Code 93
28 7 1: Code 93 Length Limitation in Max/Min Length Format 1 2D
0: Code 93 Length Limitation in Fixed Length Format
28 5 -0 Code 93 Max Code Length / Fixed Lengthl Max. 55 2D
29 5 -0 Code 93 Min Code Length / Fixed Length2 Min. 4 2D

Note | engthl must be greater than Length2.

Length Qualification

Refer to Codabar.

CODE 128

CODE 128

Byte | Bit Description Default Scan Engine
1 7 1: Enable Code 128 1 2D

0: Disable Code 128

244

Appendix Il Symbology Parameters

UCC/EAN-128
Byte | Bit Description Default Scan Engine
7 2 1: Enable GS1 formatting for EAN-128 0 2D
0: Disable GS1 formatting for EAN-128
26 4 1: Enable UCC/EAN-128 1 2D
0: Disable UCC/EAN-128
MSI
Byte | Bit Description Default Scan Engine
2 5 1: Enable MSI 0 2D
0: Disable MSI
9 7 - 6 | MSI Check Digit Verification 00 2D

00: Single Modulo 10
01: Double Modulo 10
10: Modulo 11 and Modulo 10
11: Undefined
9 5 - 4 | MSI Check Digit Transmission 00 2D
00: Last check digit is NOT transmitted
01: Both check digits are transmitted
10: Both check digits are NOT transmitted
11: Undefined
18 7 1: MSI Code Length Limitation in Max/Min Length Format 1 2D
0: MSI Code Length Limitation in Fixed Length Format
18 5 -0 MSI Max Code Length / Fixed Length 1 Max. 55 2D
19 5 -0 MSI Min Code Length / Fixed Length 2 Min. 4 2D
Note | engthl must be greater than Length2.

Verify Check Digit

Select one of the three calculations to perform check digit verification when decoding barcodes.

> If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

245

CipherLab C Programming Part |

Because of the weak structure of the symbology, it is possible to make a “short scan” error. To
prevent the “short scan” error, define the “Length Qualification” settings to ensure that the correct
barcode is read by qualifying the allowable code length. Refer to Codabar.

GS1 DATABAR (RSS) FAMILY

Byte | Bit Description Default Scan Engine

26 3 1: Convert RSS to UPC/EAN 0 2D
0: No conversion

26 2 1: Enable RSS Expanded 1 2D
0: Disable RSS Expanded

26 1 1: Enable RSS Limited 1 2D
O: Disable RSS Limited

26 0 1: Enable RSS-14 1 2D
O: Disable RSS-14

44 7 1: Enable GS1 formatting for GS1 DataBar Omnidirectional O 2D
O: Disable

44 6 1: Enable GS1 formatting for GS1 DataBar Limited 0 2D
O: Disable

44 5 1: Enable GS1 formatting for GS1 DataBar Expanded 0 2D
O: Disable

Convert RSS to UPC/EAN

Decide whether or not to convert the RSS barcodes to UPC/EAN. If true,

(1) The leading “010” will be stripped from these barcodes and a “0” will be encoded as the first
digit; this will convert RSS barcodes to EAN-13.

(2) For barcodes beginning with two or more zeros but not six zeros, this option will strip the
leading “0010” and report the barcode as UPC-A. The UPC-A Preamble setting that transmits the
system character and country code applies to such converted barcodes.

Note that neither the system character nor the check digit can be stripped.

» This only applies to RSS-14 and RSS Limited barcodes not decoded as part of a Composite
barcode.

246

Appendix Il Symbology Parameters

UPC/EAN FAMILIES

The UPC/EAN families include No Addon, Addon 2, and Addon 5 for the following
symbologies:

» UPC-EO

UPC-E1

UPC-A

EAN-8

EAN-13

Bookland EAN (ISBN)

v Vv Vv Vv Vv

For any member belonging to the UPC/EAN families, Bit O of Byte 25 is used to decide
the joint configuration of No Addon, Addon 2, and Addon 5. Other parameters are listed
below.

Byte | Bit Description Default Scan Engine

9 0 1: Convert UPC-A to EAN-13 0 2D
0: No Conversion

9 1 1: Convert UPC-EO to UPC-A 0 2D
0: No conversion

10 5 1: Transmit UPC-EO Check Digit 1 2D
0: DO NOT transmit UPC-EO Check Digit

10 4 1: Transmit UPC-A Check Digit 1 2D
0: DO NOT transmit UPC-A Check Digit

10 1 1: Transmit UPC-EO System Number 0 2D
0: DO NOT transmit UPC-EO System Number

10 0 1: Transmit UPC-A System Number 1 2D
0: DO NOT transmit UPC-A System Number

11 7 1: Convert EAN-8 to EAN-13 0 2D
0: No conversion

25 7 1: Transmit UPC-E1 System Number 0 2D
0: DO NOT transmit UPC-E1 System Number

25 6 1: Transmit UPC-E1 Check Digit 1 2D
0: DO NOT transmit UPC-E1 Check Digit

25 3 1: Convert UPC-E1 to UPC-A 0 2D
0: No conversion

39 7 1: Enable UPC-A System Number & Country Code 0 2D
0: Disable UPC-A System Number & Country Code

39 6 1: Enable UPC-E System Number & Country Code 0 2D
0: Disable UPC-E System Number & Country Code

247

CipherLab C Programming Part |

39 5 1: Enable UPC-E1 System Number & Country Code 0 2D
0: Disable UPC-E1 System Number & Country Code

Convert UPC-EO/UPC-E1 to UPC-A

Decide whether or not to expand the read UPC-EQO/UPC-E1 barcode into UPC-A. If true, the next
processing will follow the parameters configured for UPC-A.

Convert EAN-8 to EAN-13

Decide whether or not to expand the read EAN-8 barcode into EAN-13. If true, the next
processing will follow the parameters configured for EAN-13.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Transmit System Number

Decide whether or not to include the system number will be included in the data being
transmitted.

248

Appendix Il Symbology Parameters

UCC COUPON CODE
Byte | Bit Description Default Scan Engine
42 3 1: Enable UCC Coupon Code 0 2D

0: Disable UCC Coupon Code
JOINT CONFIGURATION
Byte | Bit Description Default Scan Engine
25 0 1: Enable Joint Configuration of No Addon, Addon 2 & 5 0 2D

for Any Member of UPC/EAN Families
0: Disable Joint Configuration

» If Byte 25 - bit O for joint configuration is set to 1, the parameters of Table A can be
configured separately. It depends on which member of the families needs to be
enabled.

» If Byte 25 - bit O for Joint Configuration is set to O, then

- When “ANY” of the bits of Table B is set to 1, only Addon 2 & 5 of the whole
UPC/EAN families is enabled. (= Disable No Addon)

- When “ALL” of the bits of Table B are set to 0, only No Addon is enabled that is
further decided by Table A.

When Results in
Byte 25 - bit 0 Byte/bit listed in Byte/bit listed in No Addon Addon 2 & 5
Table A Table B

=1 =1 N/A Enabled Enabled

= =0 N/A Disabled Disabled

=0 N/A Any = 1 Disabled“°t® EnabledN°®

(All) (All)

=0 =1 All=0 Enabled Disabled"°*
(All)

=0 =0 All=0 Disabled Disabled"°*
(All)

Note: The result marked with “All” indicates it occurs with the whole UPC/EAN families.

249

CipherLab C Programming Part |

TABLE A

Byte | Bit Description Default Scan Engine

1 6 1: Enable UPC-EO 1 2D
0: Disable UPC-EO (depends)

1 3 1: Enable EAN-8 1 2D
0: Disable EAN-8 (depends)

1 0 1: Enable EAN-13 1 2D
0: Disable EAN-13 (depends)

25 1 1: Enable Bookland EAN 0 2D

(Byte 1 - bit O for EAN-13 is required to be 1.)

O: Disable Bookland EAN

27 7 1: Enable UPC-A 1 2D
0: Disable UPC-A (depends)

27 5 1: Enable UPC-E1 0 2D
0: Disable UPC-E1 (depends)

Note: (1) If Byte 25 - bit O is set to 1, No Addon, Addon 2, Addon 5 of the symbology
are enabled. (2) If Byte 25 - bit O is set to O (and all bits in Table Il below must be
set 0): Only No Addon of the symbology is enabled.

TABLE B
Byte | Bit Description Default Scan Engine
1 5 or 1: Enable Only Addon 2 & 5 of UPC & EAN Families 0 2D
g 8: (It requires “ANY” of the bits to be set 1.)
1 0: Disable Only Addon 2 & 5 of UPC & EAN Families
2 7 or (It requires “ALL” of the bits to be set 0.)
6
27 6 or
4

250

Appendix Il

Symbology Parameters

CODE 11
Byte | Bit Description Default Scan Engine
25 2 1: Enable Code 11 0 2D
O: Disable Code 11
30 7 1: Code 11 Length Limitation in Max/Min Length Format 1 2D
0: Code 11 Length Limitation in Fixed Length Format
30 5- Code 11 Max Code Length / Fixed Lengthl Max. 55 2D
31 5 - Code 11 Min Code Length / Fixed Length2 Min. 4 2D
Note | engthl must be greater than Length2.
42 1 -0 |Code 11 Check Digit Verification 00 2D

00: Disable
01: One check digit
10: Two check digits

Length Qualification

The barcode can be qualified by “Fixed Length” or “Max/Min Length”. The length of a barcode
refers to the number of characters (= human readable characters), including check digit(s) it
contains. Refer to Codabar.

251

CipherLab C Programming Part |

1D SYMBOLOGIES
CHINESE 25
Byte | Bit Description Default Scan Engine
42 2 1: Enable Chinese 25 0 2D
0: Disable Chinese 25
MATRIX 25
Byte | Bit Description Default Scan Engine
0 2 1: Enable Matrix 25 0 2D
O: Disable Matrix 25
6 5 1: Verify Matrix 25 Check Digit 0 2D
0: DO NOT verify Matrix 25 Check Digit
6 4 1: Transmit Matrix 25 Check Digit 1 2D
0: DO NOT transmit Matrix 25 Check Digit
16 7 1: Matrix 25 Code Length Limitation in Max/Min Length 1 2D
Format
0: Matrix 25 Code Length Limitation in Fixed Length
Format
16 5 -0 Matrix 25 Max Code Length / Fixed Length 1 Max. 55 2D
17 5 -0 Matrix 25 Min Code Length / Fixed Length 2 Min. 4 2D
Note | engthl must be greater than Length2.
UPC/EAN — BOOKLAND ISBN FORMAT
Byte | Bit Description Default Scan Engine
41 6 UPC/EAN — Bookland ISBN Format 0 2D

252

1: UPC/EAN — Bookland ISBN 13
0: UPC/EAN — Bookland ISBN 10

Appendix Il Symbology Parameters

1D INVERSE
Byte | Bit Description Default Scan Engine
40 2 -1 1D Inverse Decoder 00 2D

00: Decode regular 1D barcode only

01: Decode inverse 1D barcode only

10: Decode both regular and inverse
POSTAL CODE FAMILY
Byte | Bit Description Default Scan Engine
36 7 1: Transmit US Postal Check Digit 1 2D

0: DO NOT transmit US Postal Check Digit
36 3 1: Enable US Planet 1 2D

O: Disable US Planet
36 2 1: Enable US Postnet 1 2D

O: Disable US Postnet
37 4 1: Enable Japan Postal 1 2D

0: Disable Japan Postal
37 3 1: Enable Australian Postal 1 2D

O: Disable Australian Postal
37 2 1: Enable Dutch Postal 1 2D

O: Disable Dutch Postal
37 1 1: Enable UK Postal Check Digit 1 2D

0: Disable UK Postal Check Digit
37 0 1: Enable UK Postal 1 2D

O: Disable UK Postal
Transmit Check Digit
Decide whether or not to include the check digit in the data being transmitted.
39 0 1: Enable USPS 4CB / One Code / Intelligent Mail 0 2D

: Disable USPS 4CB / One Code / Intelligent Mail

41 7 Enable UPU FICS Postal 0 2D

0
1:
0: Disable UPU FICS Postal

253

CipherLab C Programming Part |

COMPOSITE CODES
CC-A/B/C
Byte | Bit Description Default Scan Engine
27 1 1: Enable Composite CC-A/B 0 2D
0: Disable Composite CC-A/B
27 0 1: Enable Composite CC-C 0 2D
0: Disable Composite CC-C
44 4 1: Enable GS1 formatting for Composite CC-A/B 0 2D
0: Disable GS1 formatting for Composite CC-A/B
44 3 1: Enable GS1 formatting for Composite CC-C 0 2D
0: Disable GS1 formatting for Composite CC-C
TLC-39
Byte | Bit Description Default Scan Engine
25 4 1: Enable TCIF Linked Code 39 0 2D
0: Disable TCIF Linked Code 39
Note: Code 39 must be enabled first!
UPC COMPOSITE
Byte | Bit Description Default Scan Engine
27 3 -2 00: UPC Never Linked 01 2D

01: UPC Always Linked
10: Autodiscriminate UPC Composite

11: Undefined

Select UPC Composite Mode

254

Appendix Il Symbology Parameters

UPC barcode can be “linked” with a 2D barcode during transmission as if they were one barcode.

There are three options for these barcodes:

UPC Never Linked

Transmit UPC barcodes regardless of whether a 2D barcode is detected.

UPC Always Linked

Transmit UPC barcodes and the 2D portion. If the 2D portion is not detected, the UPC barcode
will not be transmitted.

) CC-A/B or CC-C must be enabled!

Auto-discriminate UPC Composites

Transmit UPC barcodes as well as the 2D portion if present.

Note: If “UPC Always Linked” is enabled, either CC-A/B or CC-C must be enabled.
Otherwise, it will not transmit even there are UPC barcodes.

GS1-128 EMULATION MODE FOR UCC/EAN COMPOSITE CODES

Byte | Bit Description Default Scan Engine

25 5 1 : Enable GS1-128 Emulation Mode for UCC/EAN 0 2D
Composite Codes

0 : Disable GS1-128 Emulation Mode for UCC/EAN
Composite Codes

255

CipherLab C Programming Part |

2D SYMBOLOGIES

MAXICODE, DATA MATRIX & QR CODE

Byte | Bit Description Default Scan Engine

36 6 1: Enable Maxicode 1 2D
O: Disable Maxicode

36 5 1: Enable Data Matrix 1 2D
O: Disable Data Matrix

36 4 1: Enable QR Code 1 2D
0: Disable QR Code

42 7 1: Enable MicroQR 1 2D
0: Disable MicroQR

42 6 1: Enable Aztec 1 2D
O: Disable Aztec

44 2 1: Enable GS1 formatting for GS1 DataMatrix 0 2D
O: Disable

44 1 1: Enable GS1 formatting for GS1 QR Code 0 2D
O: Disable

2D INVERSE/MIRROR

Byte | Bit Description Default Scan Engine

41 5 — 4 | Data Matrix Inverse 00 2D
00: Decode regular Data Matrix only
01: Decode inverse Data Matrix only
10: Decode both regular and inverse

41 3 - 2 | Data Matrix Mirror 00 2D
00: Decode unmirrored Data Matrix only
01: Decode mirrored Data Matrix only
10: Decode both mirrored and unmirrored

41 1 -0 OR Code Inverse 00 2D

256

00: Decode regular QR Code only
01: Decode inverse QR Code only

10: Decode both regular and inverse

Appendix Il Symbology Parameters

42 5 -4 Aztec Inverse 00 2D
00: Decode regular Aztec only
01: Decode inverse Aztec only

10: Decode both regular and inverse

PDF417

Byte | Bit Description Default Scan Engine

36 1 1: Enable MicroPDF417 1 2D
O: Disable MicroPDF417

36 0 1: Enable PDF417 1 2D
O: Disable PDF417

39 3 - 2 |Macro PDF Transmit / Decode Mode 00 2D
00: Passthrough all symbols
01: Buffer all symbols / Transmit Macro PDF when
complete
10: Transmit any symbol in set / No particular order

39 1 1: Enable Macro PDF Escape Characters 0 2D

0: Disable Macro PDF Escape Characters

Macro PDF Transmit / Decode Mode

Macro PDF is a special feature for concatenating multiple PDF barcodes into one file, known as
Macro PDF417 or Macro MicroPDF417.

Decide how to handle Macro PDF decoding -

Buffer All Symbols / Transmit Macro PDF When Complete

Transmit all decoded data from an entire Macro PDF sequence only when the entire sequence is
scanned and decoded. If the decoded data exceeds the limit of 50 symbols, no transmission will
take place because the entire sequence was not scanned!

» The transmission of the control header must be disabled.

Transmit Any Symbol in Set / No Particular Order

Transmit data from each Macro PDF symbol as decoded, regardless of the sequence.

» The transmission of the control header must be enabled.

Passthrough All Symbols

Transmit and decode all Macro PDF symbols and perform no processing. In this mode, the host
is responsible for detecting and parsing the Macro PDF sequences.

Macro PDF Escape Characters

257

CipherLab C Programming Part |

Decide whether or not to transmit the Escape character. If true, it uses the backslash “\” as an
Escape character for systems that can process transmissions containing special data sequences.

> 1t will format special data according to the Global Label Identifier (GLI) protocol, which only
affects the data portion of a Macro PDF symbol transmission. The Control Header is always
sent with GLI formatting.

258

Appendix I

SCANNER PARAMETERS

This appendix describes the associated scanner parameters.

IN THIS CHAPTER

Y071 o T 1Y, [o 1< 259
Read RedUNAaNCYcuiiiiieiiie e aeaea 262
T 1S U 263
0 EY] Gl o =Y (=] (=] 163 263

SCAN MODE

Byte 20 of the unsigned character array ScannerDesTbl is used to define a scan mode
that best suits the requirements of a specific application. Refer to Time-Out.

Byte

Bit

Description Default

Scan Engine

20

20

7-4

Scan Mode for Scanner Port 1 Laser
0000: Auto Off Mode Mode
0001: Continuous Mode

0010: Auto Power Off Mode

0011: Alternate Mode

0100: Momentary Mode

0101: Repeat Mode

0110: Laser Mode

0111: Test Mode

1000: Aiming Mode

Scan Mode for Scanner Port 1 Laser
0000: Auto-off Mode Mode
0001: Continuous Mode

0011: Alternate Mode

0110: Laser Mode

0111: Test Mode

1000: Aiming Mode

Any value other than the above: Laser Mode

CCD, Laser

2D

259

CipherLab C Programming Part |

» For CCD or Laser scan engine, it supports 9 scan modes. See the comparison table

below. Byte 21 is used for timeout duration, if necessary.

» For (Extra) Long Range Laser scan engine, it only supports Laser and Aiming modes.

When in aiming mode, it will generate an aiming dot once you press the trigger key.

The aiming dot will not go off until it times out or you press the trigger key again to

start scanning. Byte 38 is used for timeout duration, if necessary.

COMPARISON TABLE
Scan Mode Start to Scan Stop Scanning
Always | Press Hold Press Release Press Barcode Timeout

trigger |trigger trigger trigger trigger being
once twice once read

Continuous mode v

Test mode v

Repeat mode 4

Momentary mode v v

Alternate mode v v

Aiming mode 4

Laser mode 4 v

Auto Off mode

Auto Power Off
mode

Continuous Mode

RN

Non-stop scanning

» To decode the same barcode repeatedly, move away the scan beam and target it at the

barcode for each scanning.

Test Mode

Non-stop scanning (for testing purpose)

) Capable of decoding the same barcode repeatedly.

Repeat Mode

Non-stop scanning

) Capable of re-transmitting barcode data if triggering within one second after a successful

decoding.

» Such re-transmission can be activated as many times as needed, as long as the time interval

between each triggering does not exceed one second.

260

Appendix Il Scanner Parameters

Momentary Mode

Hold down the scan trigger to start with scanning.

» The scanning won't stop until you release the trigger.

Alternate Mode

Press the scan trigger to start with scanning.

» The scanning won't stop until you press the trigger again.

Aiming Mode

Press the scan trigger to aim at a barcode. Within one second, press the trigger again to decode
the barcode.

> The scanning won't stop until (a) a barcode is decoded, (b) the preset timeout expires, or (c)
you release the trigger.

Note: The system global variable AIMING_TIMEOUT can be used to change the default
one-second timeout interval for aiming. The unit for this variable is 5 ms.

Laser Mode

Hold down the scan trigger to start with scanning.

» The scanning won't stop until (a) a barcode is decoded, (b) the preset timeout expires, or (c)
you release the trigger.

Auto Off Mode

Press the scan trigger to start with scanning.

» The scanning won't stop until (a) a barcode is decoded, or (b) the preset timeout expires.

Auto Power Off Mode

Press the scan trigger to start with scanning.

» The scanning won't stop until the pre-set timeout expires, and, the preset timeout period
re-counts after each successful decoding.

261

CipherLab C Programming Part |

READ REDUNDANCY

This parameter is used to specify the level of reading security. You will have to
compromise between reading security and decoding speed.

Byte | Bit Description Default Scan Engine

11 3 -2 00: No Read Redundancy for Scanner Port 1 00 CCD, Laser
01: One Time Read Redundancy for Scanner Port 1
10: Two Times Read Redundancy for Scanner Port 1
11: Three Times Read Redundancy for Scanner Port 1
43 6-5 | 00: No Read Redundancy 00 2D
01: One Time Read Redundancy
10: Two Times Read Redundancy
» No Redundancy:

If “No Redundancy” is selected, one successful decoding will make the reading valid
and induce the “READER Event”.

» One/Two/Three Times:

If “Three Times” is selected, it will take a total of four consecutive successful
decodings of the same barcode to make the reading valid. The higher the reading
security (that is, the more redundancy the user selects), the slower the reading speed
gets.

262

TIME-OUT

Appendix Il Scanner Parameters

These parameters are used to limit the maximum scanning time interval for a specific

scan mode.
Byte | Bit Description Default Scan Engine
21 7 - 0 | Scanner time-out duration in seconds for Aiming mode, 3 sec. CCD, Laser
Laser mode, Auto Off mode, and Auto Power Off mode
1 ~ 255 (sec): Decode time-out
0: No time-out
38 7 - 0 | Scanner time-out duration in seconds for Aiming mode, 3 sec. 2D
Laser mode and Auto-off mode
1 ~ 255 (sec): Decode time-out
0: No time-out (= always scanning)
Note: For aiming time-out duration for Aiming mode, use global variable

AIMING_TIMEOUT. Refer to 2.1.3 System Global Variables.

USER PREFERENCES

Byte | Bit Description Default Scan Engine
40 7 - 6 00: Far Focus 00 2D
01: Near Focus
10: Smart Focus
40 5 1: Enable Decode Aiming Pattern 1 2D
0: Disable Decode Aiming Pattern
40 4 1: Enable Decode Illumination 1 2D
0: Disable Decode Illumination
40 3 1: Enable Picklist Mode 0 2D
O: Disable Picklist Mode
Note: Picklist mode enables the decoder to decode only barcodes aligned under the
center of the laser aiming pattern.
40 0 1: Reader sleeps during system suspend 0 2D
0: Reader is powered off during system suspend
Note: The reader powered off during system suspend is to save battery power; however,

the reader takes about 3 seconds to be ready for work after system resumes.

263

CipherLab C Programming Part |

43 7 1: Enable Mobile Display
O: Disable

4-1 1010: max. illumination level

0001: min. illumination level

264

1010

2D

2D

Appendix IV Scanner Parameters

Appendix IV
PORTING TOSHIBA-BASED C PROGRAMS ONTO 8600

This section is intended to guide users on how to adapt the older programs written for
the traditional 8 series mobile computers to the ones for 8600.

SOURCE CODE MODIFICATION

After the GCC compiler is installed on your computer, follow the instructions described in
this section to proceed the source code modification.

DATATYPE

To adapt source codes, please replace the data type declaration as the table lists. Note
the “int” data type takes 2 bytes on TCC compiler while it takes 4 bytes on GCC compiler.

Conventional 8 Series (TCC compiler) 8600 (GCC compiler)
Data Type int S32

unsigned int u32

The table below lists examples to compare the older and converted source codes.

Conventional 8 Series (TCC compiler) 8600 (GCC compiler)

Example int nlndex=13; S32 nIindex=13;
unsigned int MAX_LEN=255; U32 MAX_LEN=255;

OS_STACK is declared as “unsigned char” on TCC compiler while it is declared as “U32”
on GCC compiler.

Conventional 8 Series (TCC compiler) 8600 (GCC compiler)
Example typedef unsigned char OS_STACK; typedef U32 OS_STACK;

265

CipherLab C Programming Part |

OSTASKCREATE

The 3" parameter of OSTaskCreate refers to Data Type -> OS_STACK.

The 4™ parameter that defines total stack size (in OS_STACK elements) should use a
constant instead of calling sizeof(stack).

For example:

BEEP TASK STACRSIZE 128
static 05 _STACKR Beep_Stk[BEEP_TASK_STAEKSIZE];

OsSTaskCreate (BeepProc, (void+)0, (void*)Beep Stk, BEEP TASK STACKSIZE, 15);

TASK PRIORITY

Main task priority is 12 on 8600. User are supposed to avoid using priority 12 when
creating own thread.

Conventional 8 Series 8600
Priority of main() 16 12
Total tasks can be created by users |31 (1—~31) 22 (1—22)

STATIC FUNCTION

Static functions must be declared at the top of the file.

STARTING ADDRESS OF THE USER PROGRAM DATA STORAGE

The starting address of user program data storage in flash memory is 0x14400000.

Conventional 8 Series 8600
Starting Address OxF60000 0x14400000

For example:

EraseSector | (v

WriteFlash ((voidv) 02 voldw) gSysParam, =i (Sy=sParam)) ;

266

Appendix IV Scanner Parameters

FONT

The font parameter of SetFont(U32 font) needs to combine language with font size in
order to get the right index.

For example, if the language is Traditional Chinese and the font size is 12x24, the font
parameter should be ‘11’.

FONT TC 10X20
FONT TC 12¥24
FONT SC_10X20
FONT SC_12X24

FONT JP 10X¥20
FONT JP 12¥24
FONT EU 10X20
FONT EU 12¥24

BACKLIGHT

LCD and keypad backlight must be set separately.

Function Backlight related functions

Set backlight level SetBacklitLevel(U32 device, U32 profile, U32 level)

Set backlight time out SetBacklitTimeout(U32 device, U32 profile, U32 timeout)
Backlight trigger mode SetBacklitTrigger(U32 device, U32 profile, U32 trigger)
Turn on backlight BacklitOn(U32 device, U32 OnOff)

For example, set the LCD backlight level on ‘3’ in Battery mode:

SetBacklitLevel (BRLI T DEV LCD, BRLIT PROFILE BATTERY, BRLI T_I.E‘VEL_3 |

ON_BEEPER

The sequence buffer needs to be set as a U16 array.

For example:

const Ulé two beeper|]

on beeper (two beeper) ;

267

CipherLab C Programming Part |

FILE SYSTEM

The following are points to notice for processing files.

»

File Path: A full path needs to be passed when calling file functions. If only the file
name is specified, the RAM disk will be assigned as the drive letter by default rather
than the SD card.

“C:” represents the RAM disk.
“A:” represents the SD card.

The example below shows opening a DAT file from the SD card.

fopen (“A:\\DAT1”,6 "w");

File Extension: When processing a DBF/IDX file, the file extension (.DBO, .DB1,...) is
required.

Error Code:

DAT functions (like open(), close(),...) use the “ferrno” global member or the ferror()
function to get error code.
The read_error_code(void) can get error code for the functions other than DAT

functions.

The get_file_number(S32 type) can only operate the files in the RAM disk.

268

Appendix IV Scanner Parameters

BIT FIELD

The order of low bit and high bit on 8600 are in reverse compared with the conventional
8 series mobile computers. If using bit field to define the structure or variables, make
sure the bit order for conventional 8 series devices is reversed correctly while writing the
8600 source codes. Otherwise, you may get a wrong value when downloading the
structure from the same old PC program. See the table below.

Conventional 8 Series 8600
typedef struct tagABC typedef struct tagABC
{ {

unsigned char AA : 1; unsigned char FF : 1;

unsigned char BB : 2; unsigned char EE : 1;
unsigned char CC : 1; unsigned char DD : 2;
unsigned char DD : 2 unsigned char CC : 1

unsigned char EE : 1; unsigned char BB : 2;
unsigned char FF : 1; unsigned char AA : 1

}ABC; }ABC;

FLOATING POINT

If floating-point variables are used in the source code, please follow the instructions
below.

1. <stdlib.h> must be included at the beginning of the file, like:

2. And if you create your own task, please add “ attribute__ ((aligned(8)))” following
the stack declaration.

For example:
BEEP TASK STACKSIZE 128

static OS STACK Beep Stk[BEEP TASK STACKSIZE] attribute ((aligned (S
05TaskCreate (BeepProc, (volid+)0

roid¥) Bee Stk, BEEP TASK STACKSIZE 15]
] P_ r _ . r

r

269

CipherLab C Programming Part |

DISPLAY ADJUSTMENTS

This section describes those issues that won’t cause any error during compilation and
running may affect the screen display. You can adjust them later to have the program
display fit to the 8600-specific screen resolution.

SCREEN RESOLUTION

The screen resolution of 8600 is 240(W) x 320 (H), which is higher than the ones of
conventional 8 series devices. Therefore, the contents will be displayed in wrong position
on the screen if you don’t adjust the related display arrangement.

SYSTEM ICON ZONE

The top row of the screen is designated as the icon zone, a rectangle area of 240(W) x
20(H) pixels. If you are using the get_image() or show_image() function, the offset
of height needs to be increased by 20 pixels in order to leave a space for the system icon
zone.

' [con Zone _ 240(W) x 20(H)

CiPI-ER AP Control Area

l

270

INDEX

_KeepAlive ..o 12
ACCESS ettt et 175
ActivateProgram.........cccveivviiieennnnnnn. 27
add_member ..o 146
AIMING_TIMEOUToiiiiiiiiiiiiiieeaaenns 18
APPENA. .. 177
appendlIn ... 178
auto flush ... 131
AUTO_OFF .t 17
BacklitOn......oooiiii 92
BC X e 18
BC Y 18
beeper_status ..., 65
BootloaderVersionccooveviiiiiiennn.. 20
charger_status............cooiiiiiiiia.. 74
CheckFontoooiiiiiiiiiiiiiiiien, 113
CheCKKeY ...uuieiiiiiiiii i e 75
CheckPasswordActive..........ccvviieeann. 23
CheckSysPasswordccocveevviiennnnn. 23
CheckWakeUp.......ocovviiiiiiiiiiiinann. 12
chmod ... 127
chmodfp..coooiiii 128
Chsize ..o 178
CirCle. 104
clear bss...ooviiiiii 15
ClOSE .o 179
close DBFeviiiiiiiiiiiiieii e 147
CIr_€0l e 99
CIr_iCON (e 99
Clr_KbD o 76
(o | g (=T ! 99
(o | = To] o 100
CodeBUf ... 41
Codelen ... 41, 42
(0700 [N 1/ o 1 41
Configure_Reader...........ccceevvviiin.... 43
create DBF......coiiiiiiiii 148
create_iNdeX......coevviiiiiiiiiiniiiiiananns 149
DayOfWeekKcooviiiiiiiiiiiiiie 70
Decodecviiiiiii e 44
delete_member...........coociiiiiiin... 150
DeleteBankcoooiiiiiiiiiiiiiiiiiiaan. 27
DeVvVIiCeTYPE .. e 19
dis_alpha.....ccoooiii 84
DownLoadPage........ccccvvieviiiiiiiiiiennnnn. 34
DownLoadProgramcccceevvvviinns 28
en_alpha ... 84
eOF 179

fCloSE e 129
felosedir oo 129
070 o)Y 130, 143
L=) 130
ferror ..o 187
ffllush .o 131
fformat..........ooooiiii 132
ffreebyte ... 120
L0 T3 o 132
fgetinfo ... 133
fEtPOS e 133
fQetS o 134
filelength ..., 179
fill_rect oo 95
FlashSize....coooiiiiiiii i 118
flush _DBF....coiiiiiiiiiccie e 147
FontVersioncoociiiiiiiiiiiiiiie e, 20
fopeN ..o 135
fopendiroooeiiiii 136
fPULC .o 136
FPULS e 137
fread.....oooviiii 138
freaddir........oooiiiiiii 139
free_memory ..o, 119
fremove ... 139
frename ... 140
fSCaAN. ..o 140
fseekK .o 141
FSetPOS .o 142
FSIZe. 120
ftell. o 142
fwrite .o 143
get_alpha_enable_state 85
get_alpha_lock _state........................ 85
get_beeper_vol ... 65
get_file_number...................l 175
get_image ...oooeiviiiiiieie e 102
get_member.......ccovviiiiiiiiiiiiaia 151
get time ..o 70
get_ vbackupcoovviiiiiiiiiiie 73
get_ vmainooviiiii e 73
GetAlarm. ..o 72
GetBacklitLevel ..., 91
GetBacklitTimeoutcooeviieiinenn... 92
getchar ... 76
(7= (070] [o] R 110
(€12 (@1 8] =T] o 93
GetFilelnfo.....oooiiii 168
GetFoNt... .o 114

CipherLab C Programming Part |

GetFUNCEXtKeY....c.ovvviiiiiiiiiccieeee 88
GetFuncTogglecooiiiiiiiiii i, 87
GetlOPINStatusccoviiviiiiiiiiiiieens 13
GetKBDModifierStatus..........c.c.oceeenne 77
GetKeyClicKoviiiiii 77
GetMassStorageStatusoeveuneen. 174
GetMenuPauseTimeccccvviiiiinn... 38
GetPiC . 111
GetRFIDSecurityKeyccovvviiienennnnn.. 55
GetRFmMode......coooiiiiiiiii i 20
GetUSBChargeCurrent.........cccevvenennn.. 74
GetVibrator.......oooviiiiiiiii 69
GetVideoMode......ccovviiiiiiiiiiiiae 90
[0 0] 0)2q Y2 93
HaltScannerlcccoiiiiiiiinniinnn.. 45
HardwareVersionccooeeeviiiinns. 20
has_ member..........ccoooiiiiiiiiiiin. . 152
init_free_memory ...l 119
InitScannerlcooiiiiiiiiiiiiiiiieanns 45
InputPasswordccoooiiiiiiiiiiinnna. 23
INE_INPUL ... 39
IP_INPUL .o 40
Kbhit.. ..o 78
KernelVersioncooiiiiiiiiiiinn. . 20
KEY_CLICK e 18
KeypadLayoutccoviiiviiiiiiiiinnnn.. 21
LibraryVersion.........ccccooviiiiiiiniin. .. 21
liNe . 104
LoadProgramcceeeevieiiiiienineanne. 29
LockAlphaStateccceevviiiiiinnnn... 86
I1SEEK . 180
Iseek DBF ..o 153
ManufactureDatec.ccceviiieeinnn.. 21
member_in_DBF ...l 154
MKAIT e 144
NetVersion.......ccooiii i 21
off_ beeper.....cooo 66
on_beeper....coviiiiiii 66
(0] & 1= o 1 180
open_DBF.... 155
OriginalSerialNumber........................ 21
OS_ENTER_CRITICAL......ccevnevnnnn... 196
OS_EXIT_CRITICAL ..eveiiiiiieiiaennee 196
OSSemCreateccovvviiiiiiiiiiiiaeeenn 197
OSSemPend.....ooiiiiiiiiiiiiea 198
OSSEMPOSE.....iei e 199
OSTaskCreateccovvvviiiiiieiiiiinnnn.. 200
OSTaskDel.....ovviiiiiiiiiiiiiiiias 201
OSTIMEDIY i 201
PlaY - 67
POWER_ON ... 17
PrC_MENU. .o eeeaaaaeens 36
printf .. 96
ProgramInfocccoooiiiiiiiiiiiii, 29

ProgramManagerccoovviiiiiaeaann.. 30

ProgVersionccoveieiiiiiiiiiiiiiieaeans 18
PULCh s 78
puUtChar ... 97
PULPIXEl . 105
PULS . . 97
RaMSIZe. . .ciiiiiiii 120
RAMEOSD_DAT ..o 160
RAMEOSD _DBF ...coiiiiiiiiviiiieeieeas 164
(== T 181
read_error_code........ccceviiiiiiiinnnn... 188
readin ... 182
rebuild_index..........coooooiiinie 156
rectangle.......coooiiiiiiii 105
FEIMOVE .. e e 176
remove_indeXoooviiiiiiiiiiiiiiaaan.. 157
=] =1 0 = 176
RESEtSAM ... 57
RFIDReadFormat................ccoieeeeen.... 54
RFEIDVErSIiON....ccoviiiiiiiiiiiieeie e 22
RFEIDWriteFormat...........coooeeviiieennne.. 54
rNAir .. 144
SaveSysPassword........cccceeeviiiiinnnnnn. 24
ScannerDesTbl ..., 41
SDtORAM_DAT ..t 162
SDtoRAM_DBFciiiiiiiiiiiannenn. 166, 168
SerialNumber.......... 22
set_alpha locKcccevviiiiiiiniiiiiin., 86
set_beeper Volccoviiiiiiiiiii 65
set_led...cooviii e 68
Set_tiMe. . 71
SetAlarm ... 72
SetBacklitLevel.........ccooiiiiiiiiiiiin.. 91
SetBacklitTimeout...........ccooeiiviinans 92
571 (070 (0] 109
SetCUISOr .. 93
SetFoNt ... 115
SetFUNCEXIKEY ... 89
SetFuncToggleccevvviiiiiiiiiiee 88
SetKeyClick ... 78
Setlanguage.....ccoeviiiiiii e 116
SetMenuPauseTime.........coooviieiienn... 38
SetPWIKeY ... 14
SetRFIDSecurityKey.......ccccvvuee.... 56, 57
SetTrig2Key ...vvvvveveiiiiieianann. 79, 80, 83
SetTrigOer <o 79
SetUSBChargeCurrent...........ccceceeen.. 74
SetVibrator ... 69
SetVideoModeccooviiiiiiiiiiiiiin 90
show_imagecccovvviiiiiiiiiiiin. . 102
ShOWBMP ... 106
ShOWJIPG ... 107
ShowJIPGBYSZ ..cciiiiiiiiiiiiiiiiiea 108
ShOWPIC ..o 110
shut down.......cooiiiiiiie 14
SEr_iNPUL ..o 39

SYS IMSEC 1ttt e e aeaan 17
SYS. SEBC ittt 17
SYSSUSPENd .. 14
SYSTEM_BEEP....coiiiiiiiiiiiiiiiiiee 17
system_restart..........ooiiiiiiiiiiiiiiian 14
tell 182
tell_DBF .. 158
TriggerStatusccovviieeiiiiaiia... 79, 80
update_member.............coiiiiiin.. 159
UpdateBankooooiiiiiiiiiiiiia, 30
UpdateKernelooovviiiiiiiiiiiiinianns 31
UpdateUSer....ocueeiiieiiieeiieeee s 32
WaitHourglass........cooooiiiiiiiiiiiii. .. 98
WakeUp_Event MasK...........cocceenn... 18
WedgeSettingcoovviiiiiiiiiiiiiiiiia. . 58
(iYL= =) 94
WREIEXY . e 94
WHEIEY ... 94
WHIEE L e 183
WriteFlash ... 119

Index

	Release Notes
	Introduction
	C Compiler
	1.1 Size of Types
	1.2 Floating Types
	1.3 Alignment
	1.4 Register and Interrupt Handling
	1.5 Reserved Words
	1.6 Bit-Field Usage

	Mobile-Specific Function Library
	2.1 System
	2.1.1 General
	2.1.2 Power On Reset (POR)
	2.1.3 System Global Variables
	2.1.4 System Information
	2.1.5 Security
	2.1.6 Program Manager
	2.1.7 Download Mode
	2.1.8 Menu Design
	MENU Structure
	MENU_ENTRY Structure
	MENU Pause Time

	2.1.9 Input

	2.2 Barcode Reader
	2.2.1 Barcode Decoding
	2.2.2 Code Type
	2.2.3 Scanner Description Table

	2.3 RFID Reader
	2.3.1 Virtual COM
	2.3.2 RFID Parameter Structure
	2.3.3 RFID Data Format
	2.3.4 RFID Authentication
	APDU Feedback Structure

	2.4 Keyboard Wedge
	2.4.1 Definition of the WedgeSetting Array
	1st Element: KBD / Terminal Type
	2nd Element
	3rd Element: Inter-Character Delay

	2.4.2 Composition of Output String

	2.5 Buzzer
	2.5.1 Beep Sequence
	2.5.2 Beep Frequency
	2.5.3 Beep Duration

	2.6 LED Indicator
	2.7 Vibrator
	2.7.1 Vibrator

	2.8 Real-Time Clock
	2.8.1 Calendar
	2.8.2 Alarm

	2.9 Battery & Charging
	2.9.1 Battery Voltage
	2.9.2 Charging Status

	2.10 Keypad
	2.10.1 General
	2.10.2 ALPHA Key
	2.10.3 FN Key
	Extended Function Keys

	2.11 LCD
	2.11.1 Properties
	2.11.2 Cursor
	2.11.3 Display
	2.11.4 Clear
	2.11.5 Image
	2.11.6 Graphics
	2.11.7 Color Display

	2.12 Fonts
	2.12.1 Font Size
	2.12.2 Display Capability
	2.12.3 Multi-Language Font
	2.12.4 Special Fonts
	2.12.5 Font Files

	2.13 Memory
	2.13.1 Flash
	2.13.2 SRAM
	2.13.3 SD Card

	2.14 File Manipulation
	2.14.1 File System
	2.14.2 Disk Name and Directory
	2.14.3 File Name
	2.14.4 FILEINFO Structure
	2.14.5 FAT File Manipulation
	2.14.6 DBF Files and IDX Files
	Key Number
	Key Value

	2.14.7 File Transfer via SD Card
	2.14.8 Get File Information
	2.14.9 DEVICE_FILEINFO Structure
	2.14.10 Mass Storage Device
	2.14.11 File Manipulation Routines Compatible with Older Programs
	2.14.12 Error Code

	Standard Library Routines
	Real-Time Kernel
	ScannerDesTbl Arrays
	Symbology Parameter Table for CCD/Laser Reader
	ScannerDesTbl[]
	ScannerDesTbl2[]

	Symbology Parameter Table for 2D Reader

	Symbology Parameters
	Scan Engine – CCD or Laser
	Codabar
	Code 2 of 5 Family
	Industrial 25
	Interleaved 25
	Matrix 25
	Coop 25

	Code 39
	Code 93
	Code 128/EAN-128/ISBT 128
	Italian/French Pharmacode
	MSI
	Negative Barcode
	Plessey
	GS1 DataBar (RSS) Family
	Telepen
	UPC/EAN Families
	EAN-8
	EAN-13
	EAN-13 Addon Mode
	GTIN
	UPC-A
	UPC-E
	Addon Security for UPC/EAN
	UPC/EAN Security
	UPC/EAN Quiet Zone

	Scan Engine – 2D
	Codabar
	Code 2 of 5
	Industrial 25 (Discrete 25)
	Interleaved 25

	Code 39
	Code 93
	Code 128
	Code 128
	UCC/EAN-128

	MSI
	GS1 DataBar (RSS) Family
	UPC/EAN Families
	UCC Coupon Code
	Joint Configuration
	Table A
	Table B

	Code 11
	1D Symbologies
	Chinese 25
	Matrix 25
	UPC/EAN — Bookland ISBN Format
	1D Inverse
	Postal Code Family

	Composite Codes
	CC-A/B/C
	TLC-39
	UPC Composite
	GS1-128 Emulation Mode for UCC/EAN Composite Codes

	2D Symbologies
	Maxicode, Data Matrix & QR Code
	2D Inverse/Mirror
	PDF417

	Scanner Parameters
	Scan Mode
	Comparison Table

	Read Redundancy
	Time-Out
	User Preferences

	Porting Toshiba-based C Programs onto 8600
	Source Code Modification
	Data Type
	OSTaskCreate
	Task Priority
	Static Function
	Starting Address of the User Program Data Storage
	Font
	Backlight
	On_beeper
	File System
	Bit Field
	Floating Point

	Display Adjustments
	Screen Resolution
	System Icon Zone

	Index

